

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF PHYSICAL, BIOLOGICAL, MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

(COMMUNITY HEALTH)

1ST YEAR, 1ST SEMESTER

ACADEMIC YEAR 2022

MAIN REGULAR

COURSE CODE: HPD 1107

COURSE TITLE: APPLIED CHEMISTRY

EXAM VENUE:

TIME:

DATE:

EXAM SESSION:

STREAM:

INSTRUCTIONS:

- 1. Answer question 1 (Compulsory) in section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful data

Molar mass of N = 14 g/mol Molar mass of O = 16 g/mol Molar mass Al = 27 g/mol Molar mass of Na = 23 g/mol Molar mass of Na = 23 g/mol Molar mass of Cl = 35.5 g/mol Molar mass of C = 12 g/mol

SECTION A Question 1 (30 Marks)

a)	Define	the following terms;	
	i.	Buffer solution	
	ii.	Chemical bonding	
	iii.	Stoichiometry	
	iv.	Neutrons	[8 marks]
b)	Balanc	the following chemical equations.	
	i.	$SO_2 + O_2 \rightarrow SO_3$	
	ii.	$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$	[4 marks]
	U	ven laboratory sample we have 24.5 g of hydrogen gas reacting with the number of moles of water formed.	i oxygen gas [3 marks]

d) Balance the following redox reaction;	[6 marks]
$ClO_3^+ + SO_2^{} > SO_4^2^+ + Cl^-$	

e) A gas with a volume of 4 litres at a pressure of 205 torr is allowed to expand to a volume of 14 litres. What is the pressure in the container if the temperature remains constant? [3 marks]

f) $\operatorname{HCl}(\operatorname{aq}) + \operatorname{Al}_2(\operatorname{s}) \rightarrow \operatorname{AlCl}_3(\operatorname{aq}) + \operatorname{H}_2(\operatorname{g})$			
If 20 g of HCl and 13.5 g of Al are put into a reaction vessel.			
i. What is the yield of AlCl ₃ produced by this reaction?	[3 marks]		
ii. Which reagent is in excess and by how many moles?	[3 marks]		

SECTION B Question 2 (20 Marks)

a) Industrially, ammonia is manufactured by the reaction $H_2(g) + N_2(g) => NH_3(g)$. Find the moles of NH₃ produced if 0.018 g of H₂ was consumed. [3 marks]

- b) Briefly define the following as in the periodic table;
 - i. Family having elements with 7 electrons in the outermost shell
 - ii. The group of elements having zero valency [2 marks]

c) Briefly differentiate between metathesis and decomposition reactions and provide examples in each case. [4 marks]

d) Distinguish between;

- i) Molarity and molality
- ii) Oxidation and Oxidation number

[4 marks]

gas,

Briefly describe the following as used in the periodic table.	
i. Alkaline earth metals	[2 marks]
ii. Metalloids	[2 marks]

e)

f) A sample of Carbon dioxide in a pump has a volume of 21.5 mL and it is at 50 °C. When the amount of gas and pressure remain constant, find the new volume of Carbon dioxide in the pump if the temperature is increased to 75 °C. [3 marks]

Question 3 (20 Marks)

a) Propanol burns in air to form carbon dioxide and water as shown in the following chemical equation; C₃H₈ (g) + O₂ (s) → CO₂ (aq) + H₂O (g)

Balance the equation and determine the mass of water produced in this reaction if the mass of oxygen used was 3.6 g. [4 marks]

- b) Name the following with reference to the elements of Modern Periodic Table.
 - i) The number of electron shells in elements of period 2. [2 marks]
 - ii) The group of elements having four valence electrons. [2 marks]
- c) The volume of a sample of chlorine gas at a temperature of 200 °C and 15 atm was 350 mL. Calculate the temperature at which the volume of the gas would be 250 mL at 15 atm?
 [3 marks]
- d) Discuss any **THREE** factors affecting the rate of dissolution of solutes. [6 marks]
- e) A researcher was using 7 g of nitrogen gas at 27 °C and 750 mmHg pressure for his work. Determine the volume of the gas used. [3 marks]

Question 4 (20 Marks)

a) Distinguish between a completely immiscible liquid and a partially immiscible liquid. Give an example in each case. [4 marks]

b) In gaseous state, there are parameters that define the state of a gas. Briefly state them. [2 marks]

- c) It requires 50 seconds for 2.5 L of unknown gas to effuse through a porous wall and it takes 84 seconds for the same volume of N₂ gas to effuse at the same temperature and pressure. What is the molar mass of the unknown gas? [3 marks]
- d) Determine the oxidation of the following underlined elements;

i.	\underline{Fe}_2O_3	[2 marks]
ii.	OF_2	[2 marks]

e)	Determine the mole fraction of hydrochloric acid and sodium hydroxide f containing 80 g of HCl dissolved in 60 g of NaOH?	for a solution [3 marks]			
f)	Briefly show an ideal gas equation is derived from basic gas principles.	[4 marks]			
	Question 5 (20 marks)				
a)	Distinguish between; i) Charles law and Boyles law				
	ii) Equation of state and chemical equation	[4 marks]			
b)	Using equations, distinguish between Graham's law of effusion and Graham's law of				
	diffusion?	[3 marks]			
c)	Briefly describe the FOUR colligative properties of solutions.	[6 marks]			
d)	A dextrose (also called D-glucose, $C_6H_{12}O_6$) solution with a mass of 2.0 \times 10 ² g has				
	15.8 g of dextrose dissolved in it.				
	i. What is the moles of dextrose?	[2 marks]			
	ii. What is the mass percent of dextrose in the solution?	[2 marks]			
e)	Briefly define an ideal solution.	[3 marks]			