JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
 UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCES)
 $1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2021/2022 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SPB 9104
COURSE TITLE: BASIC CHEMISTRY II
EXAM VENUE:
STREAM: (BEd. Science and Eng)
DATE:
TIME: EXAM SESSION:

INSTRUCTIONS:

1. Answer question 1 (Compulsory) in section A and ANY other 2 questions in Section B.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.
4. Some important information/formulas are found on the last page of this question paper

SECTION A

Question 1

a) Write the electronic arrangements for Calcium, Cerium and Magnesium. (use the periodic table attached to this question paper for atomic numbers) (6 marks)
b) Describe the electron box notations of the following atoms.
i. Vanadium (III) ion $\left(\mathrm{V}^{3+}\right)$
(2 mark)
ii. Chlorine atom (Cl) (2 mark)
c) Describe the energy level diagram for the zinc atom (Zn).
d) Arrange the periodic table according to $s p d f$ electronic arrangement of atoms.
e) Promotion of an electron from principal quantum number $n=1$ to $n=\infty$ corresponds to ionization of an atom. Deduce an equation that can be used to determine the energy required to for such a promotion. Given that one mole of a substance contains $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ particles, use the deduced equation to determine the first ionization energy for H .
f) Briefly explain why the electronic configuration of $K, 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$ is energetically more stable than the configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1}$. (3 marks)
g) Use Bohr's equation to determine the Bohr radius of H atom at $\mathrm{n}=1$.
h) Define the following terms:
i. Aufbau principal
ii. Pauli's exclusion principal
iii. Heisenberg's uncertainity principal
iv. Hund's rule

SECTION B

Question 2

a) One of the most important applications of early quantum theory was the interpretation of the atomic spectrum of hydrogen on the basis of the Rutherford-Bohr model of the atom. Using a diagram, illustrate spectral lines in the emission spectrum of hydrogen.
b) Calculate the energy released by an electron as it returns to its ground state of 2 p from a 3 p orbital and characterize the resultant spectral line as either lyaman, balmer, paschen or pfund.
c) Provide a brief discussion on the four quantum numbers that fully describe the position of an electron in an atom.

Question 3

a) What is the potential of a fuel cell (a galvanic $\mathrm{H}_{2} / \mathrm{O}_{2}$ cell) operating at pH 5 ?

$$
\text { Overall reaction: } 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(10 \text { marks })
$$

b) Given that the principal quantum number, n, is 3 , and using the rules that govern quantum numbers n and l, write down the allowed values of l and m_{l}, and determine the number of atomic orbitals possible for $\mathrm{n}=4$.
c) Discuss the possible sets of quantum numbers that describe an electron in a $2 s$ atomic orbital. What is the physical significance of these unique sets?

Question 4

a) By use of diagrams, illustrate the shape of atomic orbitals in an s, p, d, f atomic orbitals. (10 marks)
b) Given that I^{-}can be oxidized to $\mathrm{IO}_{3}-$ by MnO_{4}^{-}, which is further reduced to Mn^{2+}. Deduce a balanced inorganic reaction equation.

Question 5

a) Given the following half reaction: $2 \mathrm{H}^{+}+2 \mathrm{e}^{-}=\mathrm{H}_{2},\left(\mathrm{E}^{\circ} 1 / 2=0.000 \mathrm{~V}\right)$; determine $\mathrm{E}_{1 / 2}$ at pH 5 and $\mathrm{P}_{\mathrm{H} 2}=1 \mathrm{~atm}$.
(10 marks)
b) Briefly describe the Latimer diagram for Mn in acid.
Periodic table

Lanthanoids	$\begin{gathered} 57 \\ \mathrm{La} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.24 \end{gathered}$	$\begin{gathered} \hline 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.35 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathrm{Yb} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 174.97 \end{gathered}$
Actinoids		$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.04 \end{gathered}$	$\stackrel{92}{\mathbf{U}}_{238.03}$	$\begin{gathered} 93 \\ \mathrm{~Np} \end{gathered}$	$\begin{gathered} 94 \\ \text { Pu } \\ 239.05 \end{gathered}$	$\begin{gathered} 95 \\ \text { Am } \\ 241.06 \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{Cm} \\ 244.07 \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ 249.08 \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ \text { Cf } \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ 252.09 \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ 257.10 \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ 258.1 \end{gathered}$	$\begin{aligned} & 102 \\ & \text { No } \\ & 259 \end{aligned}$	$\begin{aligned} & 103 \\ & \text { Lr } \end{aligned}$

Fig. 1.9 Boundary surfaces for the angular parts of the $1 s$ and $2 p$ atomic orbitals of the hydrogen atom. The nodal plane shown in grey for the $2 p_{z}$ atomic orbital lies in the $x y$ plane.

Fig. 1.10 Representations of an s and a set of three degenerate p atomic orbitals. The lobes of the p_{x} orbital are elongated like those of the p_{y} and p_{z} but are directed along the axis that passes through the plane of the paper.

Fig. 1.11 Representations of a set of five degenerate d atomic orbitals.
a) $\mathrm{R}=$ Rydberg constant for hydrogen $=1.097 \times 10^{7} \mathrm{~m}^{-1}$ or 1.097×10^{5} cm^{-1};
b) Speed of light $\mathrm{C}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
c) Bohr radius $\left(\mathrm{r}_{\mathrm{un}}\right), r_{n}=\frac{\varepsilon_{0} h^{2} n^{2}}{\pi m_{e} e^{2}}$

$$
\begin{aligned}
& \varepsilon_{0}=\text { permittivity of vacuum }=8.854 \times 10^{-12} \mathrm{Fm}^{-1} \\
& h=\text { Planks constant }=6.626 \times 10^{-34} \mathrm{Js} \\
& n=1,2,3, \ldots \text { describing a given orbit } \\
& m_{e}=\text { electron rest mass }=9.109 \times 10^{-31} \mathrm{~kg} \\
& e=\text { charge on an electron }(\text { elementary charge })=1.602 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

Nernst equation

$$
E=E^{o}-\frac{0.0592}{n} * \log Q
$$

where Q is the concentration ratio of products over reactants, raised to the powers of their coefficients in the reaction.

