

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCES) 1ST YEAR 1ST SEMESTER 2021/2022 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SPB 9104	
COURSE TITLE: BASIC CHE	MISTRY II
EXAM VENUE:	STREAM: (BEd. Science and Eng)
DATE:	
TIME:	EXAM SESSION:

INSTRUCTIONS:

- 1. Answer question 1 (Compulsory) in section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.
- 4. Some important information/formulas are found on the last page of this question paper

SECTION A

Question 1

- a) Write the electronic arrangements for Calcium, Cerium and Magnesium.(use the periodic table attached to this question paper for atomic numbers)
- b) Describe the electron box notations of the following atoms.
 - i. Vanadium (III) ion (V^{3+}) (2 mark)
 - ii. Chlorine atom (Cl) (2 mark)
- c) Describe the energy level diagram for the zinc atom (Zn). (4 marks)
- d) Arrange the periodic table according to *spdf* electronic arrangement of atoms. (3 marks)
- e) Promotion of an electron from principal quantum number n = 1 to $n = \infty$ corresponds to ionization of an atom. Deduce an equation that can be used to determine the energy required to for such a promotion. Given that one mole of a substance contains 6.022 x 10^{23} mol⁻¹ particles, use the deduced equation to determine the first ionization energy for H. (4 marks)
- f) Briefly explain why the electronic configuration of K, 1s²2s²2p⁶3s²3p⁶4s¹ is energetically more stable than the configuration 1s²2s²2p⁶3s²3p⁶3d¹.
 (3 marks)
- g) Use Bohr's equation to determine the Bohr radius of H atom at n = 1.

(2 marks)

(6 marks)

- h) Define the following terms: (4 marks)
 - i. Aufbau principal
 - ii. Pauli's exclusion principal
 - iii. Heisenberg's uncertainity principal

iv. Hund's rule

SECTION B

Question 2

- a) One of the most important applications of early quantum theory was the interpretation of the atomic spectrum of hydrogen on the basis of the Rutherford–Bohr model of the atom. Using a diagram, illustrate spectral lines in the emission spectrum of hydrogen. (5 marks)
- b) Calculate the energy released by an electron as it returns to its ground state of 2p from a 3p orbital and characterize the resultant spectral line as either lyaman, balmer, paschen or pfund. (7 marks)
- c) Provide a brief discussion on the four quantum numbers that fully describe the position of an electron in an atom.
 (8 marks)

Question 3

a) What is the potential of a fuel cell (a galvanic H_2/O_2 cell) operating at pH 5?

Overall reaction: $2 H_2(g) + O_2(g) = 2H_2O(l)$ (10 marks)

b) Given that the principal quantum number, n, is 3, and using the rules that govern quantum numbers *n* and *l*, write down the allowed values of *l* and *m_l*, and determine the number of atomic orbitals possible for n = 4.

(5 marks)

c) Discuss the possible sets of quantum numbers that describe an electron in a 2s atomic orbital. What is the physical significance of these unique sets? (5 marks)

Question 4

- a) By use of diagrams, illustrate the shape of atomic orbitals in an *s*, *p*, *d*, *f* atomic orbitals.
 (10 marks)
- b) Given that I⁻ can be oxidized to IO₃⁻ by MnO₄⁻, which is further reduced to Mn²⁺. Deduce a balanced inorganic reaction equation. (10 marks)

Question 5

- a) Given the following half reaction: $2H^+ + 2e^- = H_2$, (E°1/2 = 0.000 V); determine $E_{1/2}$ at pH 5 and $P_{H2} = 1$ atm. (10 marks)
- b) Briefly describe the Latimer diagram for Mn in acid. (10 marks)

	0	D
-	S	2
3		9
	5	J
-	C	3
	C	D
•	Ì	
	0	U
6	2	

18 ²	4.00	10 Ne 20.18	18 Ar 39.95	36	Kr 	54	Xe	131.30	86	Rn	222			11	174.97	103	Lr 262
	17	9 F 19.00	17 Cl 35.45	35	Br 70.01	53	-	126.90	85	At	210			°2 4	173.04	102	NO 259
	16	8 O 16.00	16 S 32.06	34	Se	/ 0.90 52	Te	127.60	84	Po	210			69 Tm	168.93	101	Md 258.10
	15	7 N 14.01	15 P 30.97	33	As	51	Sb	121.75	83	Bi	208.98			68 Fr	167.26	100	Fm 257.10
	14	6 C 12.01	14 Si 28.09	32	de Ge	50 FC	Sn	118.71	82	Pb	207.19			67 HO	164.93	66	ES 252.09
	13	5 B 10.81	13 A 26.98	31	Ga	49	L L	114.82	81	F	204.37			66 Dv	162.50	98	Ct 252.08
	I		12	30	Zn	48	P U	112.40	80	Hg	200.59	112 111b	[285]	65 T b	158.92		BK 249.08
	ass, A _r		7	29	Cu	47	Aq	107.87		Au	+	111 Ro	[272]	64 Gd	157.25		Cm 244.07
 ▲ Atomic number, Z ▲ Element symbol ▲ Relative atomic mass, Ar 	atomic m		10	28	Ni	+	Pd			F	195.08	110	[271]	63 Fu	151.96		Am 241.06
		6	27	S		Rh				192.22	109 M+	[268]	62 Sm	150.35		Pu 239.05	
		ø	26	Fe	+	Ru	_		Os	190.23	108 Hc	[277]	61 Pm			237.05	
	008		7	25	Nn		۲			Re	186.21	107 Rh	[264]	09 09	4		U 238.03
	0		9	24	ک	42	No	95.94	74	>	183.85	106 S	[266]	59 Pr			231.04
			Ŋ	23	>	41	qN	92.91	73	Ta	180.95	105 Dh	[262]	28 28	_		
			4								-	104 Rf			_		AC 227.03
			m		Sc	-				La-Lu	<u> </u>	Ar-1r					
		<i></i>						3						ids			
	2	4 Be	12 Mg 24.31	20	U S S	38	S S	87.6	56	Ba	137.	88	226.0	lanthanoids			Actinoids
	1.008	з Li 6.94	11 Na 22.99	19	×	37.10	Rb	85.47	55	ຽ	132,91	87 Fr	223	lant			Acti

5

Fig. 1.9 Boundary surfaces for the angular parts of the 1s and 2p atomic orbitals of the hydrogen atom. The nodal plane shown in grey for the $2p_z$ atomic orbital lies in the xy plane.

Fig. 1.10 Representations of an s and a set of three degenerate p atomic orbitals. The lobes of the p_x orbital are elongated like those of the p_y and p_z but are directed along the axis that passes through the plane of the paper.

Fig. 1.11 Representations of a set of five degenerate d atomic orbitals.

- a) R = Rydberg constant for hydrogen = 1.097 x 10⁷ m⁻¹ or 1.097 x 10⁵ cm⁻¹;
- b) Speed of light $C = 2.998 \text{ x } 10^8 \text{ ms}^{-1}$

c) Bohr radius (r_{un}), $r_n = \frac{\varepsilon_0 h^2 n^2}{\pi m_e e^2}$

 ε_0 = permittivity of vacuum = 8.854 x 10⁻¹² Fm⁻¹

h=Planks constant = 6.626×10^{-34} Js

 $n = 1, 2, 3, \ldots$ describing a given orbit

 m_e = electron rest mass = 9.109 x 10⁻³¹ kg

e = charge on an electron (elementary charge) = 1.602 x 10⁻¹⁹C

Nernst equation

$$E = E^o - rac{0.0592}{n} * logQ$$

where Q is the concentration ratio of products over reactants,

raised to the powers of their coefficients in the reaction.