JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND
 TECHNOLOGY
 UNIVERSITY EXAMINATION FOR THE DEGREE OF BARCHELOR IN EDUCATION SCIENCE WITH IT

MAIN

REGULAR

COURSE CODE:

COURSE TITLE: SOLID STATE PHYSICS
EXAM VENUE:
DATE: EXAM SESSION:
TIME: 2:00HRS

1. Instructions: Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
2. Answer Question 1 (compulsory) and ANY other 2 questions
3. Candidates are advised not to write on the question paper.
4. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION 1 (30 MARKS)

a. State the Dulong-Petit Law for crystalline matter
b. What is the probability at 400 K that a state at the bottom of the conduction band is occupied in silicon. Given that $E_{g}=1.1 \mathrm{eV}$
c. Derive the expression for the Wannier Theorem
d. Consider a monoatom of mass M in a basis. Show that in the long wavelength limit i.e. $K a \ll 1$, the dispersion relation becomes $\omega^{2}=(C / M) K^{2} a^{2} \quad$ where C and a are spring and lattice constants respectively
e. Give a brief overview of the tight binding model and state how it deviates from the free electron gas model
f. Define the Debye frequency $\omega_{D} D$ in terms of the ebye Temperature T_{D}
g. The Debye temperature θ for iron is known to be 360 K . Calculate v_{m}, the maximum frequency
h. State the Dulong-Petit Law for crystalline matter

QUESTION 2 (20MARKS)

a. Consider a two dimensional square lattice of lattice parameter a. Each site provides two conducting electrons.
I. Determine k_{F} in terms of a.
II. Under free electron model, at what value of k_{y}
III. Will the Fermi sphere cross the boundary at $\mathrm{x}=\pi / \mathrm{a}$?
IV. The electrons are actually only nearly free and a gap of $2 \mathrm{U}=0.1 \mathrm{E}_{\mathrm{F}}$ opens up at the Brillouin zone boundary. At what value of k_{y} will the Fermi surface in the first Brillouin zone cross the boundary at $\mathrm{x}=\pi / \mathrm{a}$?
V. How about the second Brillouin zone? (You can express your answers in unit of $\pi /$ a.)

QUESTION 3 (20MARKS)

a) The energy of interaction of two atoms a distance r apart can be written as:

$$
E(r)=-\frac{p}{r}+\frac{q}{r^{7}} \text { where } p \text { and } q \text { are constants. }
$$

i. Show that for the particles to be in equilibrium, $r=r_{o}=(7 q / p)^{1 / 6}$
ii. In stable equilibrium, show that the energy of attraction is seven times that of the repulsion
iii. The energy of attraction and repulsion at a stable equilibrium are equal. Show
b)
i) Define mobility of a carrier of current and show how it is related to the Hall Coefficient
ii) Compare the mobility of an electron in the conduction band of a semiconductor and the mobility of an electron (or hole) in the valence band. Give reason for your answer [3mks]
iii) Derive an expression for the electrical conductivity of a metal on the basis of free electron
[3mks]

QUESTION 4 (20 MARKS)

a. Define Madelung Energy and explain why care must be taken when calculating this cohesive energy in order to avoid getting divergent results
b. Use the Drude Model to derive the expressions for the net drift current in a metal and state the assumptions made
c. Define the Debye-Waller factor and explain its significance in scattering experiments

QUESTION 5 (20 MARKS)

a. Compare the specific heat per mole of a monoatomic and a diatomic gas at constant volume. Use appropriate equations to explain your answer.
b. Calculate the specific heat capacity of a monoatomic crystalline solid
c. Debye's model of solids gives the expression for specific heat $C_{v}=9 N_{0} k \frac{1}{x^{3}} \int_{0}^{x} \frac{\sigma^{4} e^{\sigma}}{\left(e^{\sigma}-1\right)^{2}} d E$ where $\sigma=\frac{h v}{k T}, \quad x=\frac{h v_{m}}{k T}$ and $\theta_{D}=\frac{h v_{m}}{k}$ is the Debye's characteristic temperature. Show that;
i. At high temperatures, Debye's model gives Dulong Petit law
ii. At low temperatures it gives $C_{\mathrm{v}} \propto T^{3}$ in agreement with the experiment

