JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
2022/2023 EXAMINATIONS

MAIN SPECIAL
COURSE CODE: SPB 9220
COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS II
EXAM VENUE: STREAM: EDUCATION
DATE:
EXAM SESSION:
TIME: 2:00 HRS
Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION I (30 MARKS)

Question 1 (Compulsory)

(a) (i) State the fundamental theorem of algebra.
(ii) Express in polar form and draw in an Argand diagram, the conjugate of $\mathrm{z}=3+4 \mathrm{i}$.
(b) Work out the Laurent series expansion for the function

$$
f(z)=\frac{1}{z-1}
$$

in the region $|z|>1$.
(c) Evaluate f_{x} and f_{y} for the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=3 \mathrm{x}^{2} \mathrm{y}^{3}+2 \mathrm{xy}^{2}-\mathrm{xy}+2 \mathrm{x}-3$ at the point $(2,-1)$.
(d) (i) Define the pole of a function.
(ii) State the singularities in the complex function

$$
\begin{equation*}
f(z)=\frac{1}{(z-2)(z-3)} . \tag{2marks}
\end{equation*}
$$

(e) Use Cramer's rule to solve the simultaneous equations

$$
\begin{gathered}
2 x_{1}+4 x_{2}+3 x_{3}=4 \\
x_{1}-2 x_{2}-2 x_{3}=0 \\
-3 x_{1}+3 x_{2}+2 x_{3}=-7 .
\end{gathered}
$$

(f) Evaluate $(-\sqrt{3}-i)^{-6}$
(g) Find the determinant of $B=\left(\begin{array}{l}\not ⿴ 囗 \\ \mathbb{Q} 2 \\ 32 \\ \mathbf{Z} 2\end{array}\right)$.
(h) Find the general solution of the differential equation $\frac{d y}{d x}+b y=0$.
(i) Show that in a Fourier series of a function $\mathrm{f}(\mathrm{x})$ in the interval $[-\pi, \pi]$, the Fourier coefficient a_{0} is given by

$$
\begin{equation*}
a_{0}=\frac{1}{2 \pi} \int f(x) d x \tag{4marks}
\end{equation*}
$$

Question 2 (20 marks)

(a) If $u=e^{x-y-2 z}$,show that:
(i) $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$
(4 marks)
(ii) $\frac{\partial^{2} u}{\partial y \partial z}=\frac{\partial^{2} u}{\partial z \partial y}$
(4 marks)
(b) Show that the function $\mathrm{f}(\mathrm{z})=\mathrm{e}^{-\mathrm{y}} \cos x+\mathrm{ie}^{-\mathrm{y}} \sin x$ satisfies the Cauchy-Riemann conditions, hence find $f^{\prime}(z)$.
(c) Find the total differential of each of the following functions:
(i) $z=x^{2}-3 x y+y^{2}+2 y$
marks)
(ii) $z=\cos ^{2}(x-y)$
(2 marks)

Question 3 (20 marks)

(a) Determine a matrix P that diagonalizes $A=\left(\begin{array}{l}\theta 2 \\ \mathbf{z} \\ \mathbf{1}\end{array}\right)$.
(b) Investigate whether the following linear system of equations can be solved using Cramer's rule.

$$
\begin{gather*}
2 x_{1}+x_{2}+x_{3}=6 \\
3 x_{1}+2 x_{2}-2 x_{3}=-2 \\
x_{1}+x_{2}+2 x_{3}=4
\end{gather*}
$$

marks)

Question 4 (20 marks)

(a) Find the linearization of $f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3$ at the point $(3,2)$. marks)
(b) Show that the set $S=\left\{[0,1,0], \frac{1}{\sqrt{2}}[1,0,1] \frac{1}{\sqrt{2}}[1,0,-1]\right\}$ is orthonormal. (4 marks)
(c) Find the Laurent series expansion of

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

in the region $|z|<1$.

Question 5 (20 marks)

(a) Given the basis $S=\left\{\overrightarrow{X_{1}, \overrightarrow{X_{2}, X_{3}}}\right\}$ for \mathbb{R}^{3} where

$$
\overrightarrow{X_{1}}=[1,1,1], \overrightarrow{X_{2}}=[-1,0,-1] \text { and } \overrightarrow{X_{3}}=[-1,2,3]
$$

use the Gram-Schmidt process to transform S to an orthonormal basis for \mathbb{R}^{3}.
(b) Determine $\operatorname{Im}[(1+2 i)(2+3 i)]$.
(10 marks)
(2 marks)
(c) Find the Fourier series for the function

$$
f(x)=\left\{\begin{array}{c}
0,-\pi \leq x \leq 0 \\
x, 0 \leq x \leq \pi
\end{array}\right.
$$

