# JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY <br> SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES 

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
2022/2023 EXAMINATIONS

MAIN SPECIAL
COURSE CODE: SPB 9327
COURSE TITLE: QUANTUM MECHANICS I

EXAM VENUE:
DATE:
STREAM: EDUCATION
EXAM SESSION:

TIME: 2:00 HRS
Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

## Useful constants

$\hbar=1.054 \times 10^{-34} \mathrm{Js}$
mass of proton $1.67 \times 10^{-27} \mathrm{~kg}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$

## Question 1 (30 marks)

(a) (i) Calculate the de Broglie wavelength for an electron having kinetic energy of 1 eV .
(ii) In the double-slit experiment, two waves defined by $\psi_{1}=\frac{1}{\sqrt{2}} e^{i x}$ and $\psi_{2}=e^{i x}$ pass through the slits. Determine the probability density on the screen.
(b) Explain the probabilistic interpretation of quantum mechanics.
(c) Derive the time-independent Schroedinger equation.
(4 marks)
(d) Define the following terms as used in quantum mechanics:
(i) scattering state.
(ii) tunnelling.
(e) The expectation value of the position of a particle described by the wave function $\psi=\frac{1}{2} x$ limited to the $x$-axis between $x=0$ and $x=b$ is 16 . Find the value of $b$.
(f) A 1 eV electron is trapped inside the surface of a metal. If the potential barrier is 4.0 eV and the width of the barrier is $2 \AA$, calculate the probability of its transmission.
(g) An eigenfunction of the operator $\frac{d^{2}}{d x^{2}}$ is $\psi=e^{2 x}$. Find the corresponding eigenvalue.
(3 marks)
(h) An electron has a speed of $500 \mathrm{~m} / \mathrm{s}$ with an accuracy of $0.004 \%$. Calculate the certainty with which we can locate the position of the electron.
(i) State one postulate of quantum mechanics.
(1 mark)

## Question 2 (20 marks)

(a) Solve the one-dimensional time-independent Schrödinger equation for a particle in an infinite onedimensional square well, hence sketch the first three stationary states.
(15 marks)
(b) A particle of mass $m$, confined to a harmonic oscillator potential $V=m x^{2} \omega^{2} / 2$, is in a state described by the wave function

$$
\Psi(x, t)=A e^{\left(\frac{-m x^{2} \omega}{2 \hbar}-i \frac{\omega t}{2}\right)}
$$

Verify that this is a solution of the Schrödinger equation.

## Question 3 (20 marks)

(a) A Gaussian wave packet is given by $\phi(k)=\operatorname{Aexp}\left[-a^{2}\left(k-k_{0}\right)^{2} / 4\right]$ where A is a normalization factor.
(i) Determine A, hence find $\psi(x, 0)$.
(8 marks)
(ii) Calculate the probability of finding the particle in the region $-a / 2 \leq x \leq a / 2$.
(8 marks)
(b) Derive an expression for the dispersive relation.

## Question 4 ( 20 marks)

(a) The Schroedinger equation can be expressed as Obtain an expression for the ground state, hence the energy of the $\mathrm{n}^{\text {th }}$ state.
(b) Using the uncertainty principle, show that the lowest energy of an oscillator is $\frac{1}{2} \hbar \omega$.
(c) An electron is moving freely inside a one-dimensional infinite potential box with walls at $x=0$ and $x=a$. If the electron is initially in the ground state $(n=1)$ of the box and if the right-hand side wall is moved instantaneously from $x=a$ to $x=4 a$, calculate the probability of finding the electron in:
(i) the ground state of the new box.
(ii) the first excited state of the new box.

## Question 5 (20 marks)

(a) A particle of mass $m$ is in a one-dimensional potential energy field defined by

$$
V(x)=\left\{\begin{array}{c}
\infty, \text { if }-\infty<x<0 \\
-V_{0} \text { if0 }<x<a \\
0, \text { if } a<x<\infty
\end{array}\right.
$$

Show that $\tan k_{0}=-\frac{\alpha}{k_{0}}$ where the symbols have their usual meanings and $\alpha$ and $k_{0}$ have to be defined.
(10 marks)
(b) The wavefunction of a particle moving in one dimension is given by

$$
\Psi(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) .
$$

Calculate the expectation values of position $\langle x\rangle$ and of the momentum $\left\langle p_{x}\right\rangle$.

