

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

2022/2023 EXAMINATIONS

MAIN SPECIAL

COURSE CODE: SPB 9327 COURSE TITLE: QUANTUM MECHANICS I EXAM VENUE: STRE DATE: EXAM TIME: 2:00 HRS

STREAM: EDUCATION EXAM SESSION:

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful constants $\hbar = 1.054 \times 10^{-34}$ Js mass of proton 1.67 × 10⁻²⁷kg 1 eV = 1.6 x 10⁻¹⁹ J mass of electron = 9.11 x 10⁻³¹ kg

Question 1 (30 marks)

(a) (i) Calculate the de Broglie wavelength for an electron having kinetic energy of 1 eV. (3 marks) (ii) In the double-slit experiment, two waves defined by $\psi_1 = \frac{1}{\sqrt{2}}e^{ix}$ and $\psi_2 = e^{ix}$ pass through the slits. Determine the probability density on the screen. (4 marks) (b) Explain the probabilistic interpretation of quantum mechanics. (2 marks) (c) Derive the time-independent Schroedinger equation. (4 marks) (d) Define the following terms as used in quantum mechanics: (i) scattering state. (1 mark)(ii) tunnelling. (1 mark)(e) The expectation value of the position of a particle described by the wave function $\psi = \frac{1}{2}x$ limited to the x-axis between x = 0 and x = b is 16. Find the value of b. (3 marks) (f) A 1 eV electron is trapped inside the surface of a metal. If the potential barrier is 4.0 eV and the width of the barrier is 2 Å, calculate the probability of its transmission. (4 marks)

(g) An eigenfunction of the operator $\frac{d^2}{dx^2}$ is $\psi = e^{2x}$. Find the corresponding eigenvalue.

(3 marks)

(1 mark)

(h) An electron has a speed of 500 m/s with an accuracy of 0.004%. Calculate the certainty with which we can locate the position of the electron. (4 marks)

(i) State one postulate of quantum mechanics.

Question 2 (20 marks)

(a) Solve the one-dimensional time-independent Schrödinger equation for a particle in an infinite onedimensional square well, hence sketch the first three stationary states. (15 marks)

(b) A particle of mass *m*, confined to a harmonic oscillator potential $V = mx^2 \omega^2/2$, is in a state described by the wave function

$$\Psi(x,t) = Ae^{\left(\frac{-mx^2\omega}{2\hbar} - i\frac{\omega t}{2}\right)}$$

Verify that this is a solution of the Schrödinger equation.

Question 3 (20 marks)

(5 marks)

(a) A Gaussian wave packet is given by $\phi(k) = Aexp[-a^2(k-k_0)^2/4]$ where A is a normalization factor.

- (i) Determine A, hence find $\psi(x, 0)$. (8 marks)
- (ii) Calculate the probability of finding the particle in the region $-a/2 \le x \le a/2$.

(8 marks)

(b) Derive an expression for the dispersive relation. (4 marks)

Question 4 (20 marks)

(a) The Schroedinger equation can be expressed as Obtain an expression for

the ground state, hence the energy of the nth state.

(b) Using the uncertainty principle, show that the lowest energy of an oscillator is $\frac{1}{2}\hbar\omega$.

```
(6 marks)
```

(7 marks)

(c) An electron is moving freely inside a one-dimensional infinite potential box with walls at x = 0 and x = a. If the electron is initially in the ground state (n = 1) of the box and if the right-hand side wall is moved instantaneously from x = a to x = 4a, calculate the probability of finding the electron in:

(i) the ground state of the new box. (4 marks)(ii) the first excited state of the new box. (3 marks)

Question 5 (20 marks)

(a) A particle of mass m is in a one-dimensional potential energy field defined by

$$V(x) = \begin{cases} \infty, \text{if} - \infty < x < 0\\ -V_0, \text{if} 0 < x < a\\ 0, \text{if} a < x < \infty \end{cases}$$

Show that $tank_0 = -\frac{\alpha}{k_0}$ where the symbols have their usual meanings and α and k_0 have to be defined. (10 marks)

(b) The wavefunction of a particle moving in one dimension is given by

$$\Psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right).$$

Calculate the expectation values of position $\langle x \rangle$ and of the momentum $\langle p_x \rangle$. (10 marks)