
1

JARAMOGI OGINGAODINGAUNIVERSITYOF SCIENCEAND TECHNOLOGY

SCHOOLOF BIOLOGICALAND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

2022/2023 EXAMINATIONS

MAIN SPECIAL

COURSE CODE: SPB 9427
COURSE TITLE: QUANTUMMECHANICS II
EXAM VENUE: STREAM: EDUCATION
DATE: EXAM SESSION:
TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.

3. Candidates must hand in their answer booklets to the invigilator while in the examination
room.

Useful constants
In spherical coordinates,
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Question 1 (30 marks)
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(a) (i) State any two postulates of quantum mechanics. (2 marks)
(ii) Distinguish between the interaction picture and the Heisenberg picture. (2 marks)

(b) A spin 1/2 particle is in the state

� = 1
6
1 + �
2 .

If ��� is measured, find the probability of getting +ℏ 2and −ℏ 2respectively. (3 marks)

(c) Calculate the commutation relation ��, ��� . (2 marks)

(d) List down the state vectors � and � , and use them to determine the spin state transition operators
of a two-state system, �+� ; �−� . (4 marks)

(e) From the definition of angular momentum, prove the commutation relation ��� , ��� = �ℏ��� .
(3 marks)

(f) The spatial wavefunction of hydrogen is given by

���� �, �, � = ������ �, � .

Explain the meaning of each term in this function. (2 marks)

(g) For a spin 1/2 elementary particle, write the spin in terms of the spin-up and spin-down matrices.

(4 marks)

(h) Explain the principle of perturbation theory, indicating any limitation to the use of the theory.

(3 marks)

(i) From the results of the commutator relation ��� , �� ,show how the matrix elements of ��can be
obtained from the corresponding matrix elements of ��. (3 marks)

(j) Give the major steps involved in using the Ritz variation method. (2 marks)

Question 2 (20 marks)

(a) The number state vector � of a quantized harmonic oscillator satisfies the state transition algebraic
relations

�� � = � � − 1 ; ��+ � = �+1 �+1

(i) Identity the operators ��and ��+. (1 mark)
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(ii) Show that (4 marks)

(b) The angular momentum in spherical coordinates is given by

��� =− �ℏ ��
�
��

− ��
1

����
�
��

.

(i) Express ��and ��in terms of the rectangular unit vectors ��, �� and ��,hence obtain ��� , ��� and ��� .
(5 marks)

(ii) Obtain the lowering operator �−� . (3 marks)

(c) Angular momentum operators can be defined by the following matrices:

��� =
ℏ
2

010
101
010

; ��� =
ℏ
2

0−�0
�0−�
0�0

; ��� =
ℏ
2

100
000
00−1

.

Determine the commutation bracket ��� , ��� in terms of ��� , ��� and ��� . (7 marks)

Question 3 (20 marks)

(a) Prove by direct matrix multiplication that the Pauli matrices

�� =
01
10 ; �� =

0−�
�0 ; �� =

10
0−1

anticommute and they follow the commutation relations ��, �� = 2���, �, �, �cyclic.

(8 marks)

(b) For an electron, it is given that

��2�,�� = ℏ2� � + 1 �,�� , ����,�� = ℏ��.

(i) State what is represented by ��, �and ��. (3 marks)

(ii) Express the state of the electron in terms of the up and down spinors, �+,�−.(4 marks)

(c) Derive the Heisenberg’s equation of motion. (4 marks)

Question 4 (20 marks)

(a) For the hydrogen atom, use the Schroed̈inger equation in spherical coordinates to show that the
allowed energies are given by

�� =−
�
2ℏ

�2

4��0

2 1
�2,

� = 1,2,3, . . . (13 marks)
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(b) A particle of charge q and mass m, which is moving in a one-dimensional harmonic potential of
frequency ω, is subject to a weak electric field ε in the x-direction. Find an exact expression for its
energy, and the energy to first nonzero correction, using perturbation theory. (7 marks)

Question 5 (20 marks)

(a) Discuss the differences between bosons and fermions, giving examples of each. (5 marks)

(b) Given the commutators

���, � = �ℏ�, ���, � = �ℏ�, ���, � = 0,

use the quantum numbers n, l and m to show that the selection rule for m is �� =± 1or 0.
(7 marks)

(c) The Schroedinger equation of a particle confined to the positive x-axis is

−ℏ2

2�
�2�
��2

+���� = ��

where � 0 = 0,� � → 0as � → ∞and E is the energy eigenvalue. Use the trial function ���� −��
to estimate the energy, and hence obtain the best value of the parameter a.

(8 marks)


