JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
2022/2023 EXAMINATIONS

MAIN SPECIAL
COURSE CODE: SPB 9427
COURSE TITLE: QUANTUM MECHANICS II

EXAM VENUE:
DATE:
STREAM: EDUCATION
EXAM SESSION:

TIME: 2:00 HRS
Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful constants
In spherical coordinates,
$\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \phi^{2}}\right)$
Question 1 (30 marks)
(a) (i) State any two postulates of quantum mechanics.
(ii) Distinguish between the interaction picture and the Heisenberg picture.
(b) A spin $1 / 2$ particle is in the state

$$
\chi=\frac{1}{\sqrt{6}}\binom{1+i}{2}
$$

If \hat{S}_{z} is measured, find the probability of getting $+\hbar / 2$ and $-\hbar / 2$ respectively. (3 marks)
(c) Calculate the commutation relation $\left[\hat{x}, \hat{L_{z}}\right]$.
(d) List down the state vectors $u\rangle$ and $|d\rangle$, and use them to determine the spin state transition operators of a two-state system, $\hat{S_{+}} ; \hat{S_{-}}$.
(e) From the definition of angular momentum, prove the commutation relation $\left[\hat{L_{x}}, \hat{L_{y}}\right]=i \hbar \hat{L_{z}}$.
(f) The spatial wavefunction of hydrogen is given by

$$
\psi_{n l m}(r, \theta, \phi)=R_{n l} Y_{l}^{m}(\theta, \phi)
$$

Explain the meaning of each term in this function.
(g) For a spin $1 / 2$ elementary particle, write the spin in terms of the spin-up and spin-down matrices.
(h) Explain the principle of perturbation theory, indicating any limitation to the use of the theory.
(i) From the results of the commutator relation $\left[\hat{L}_{z}, \hat{x}\right]$, show how the matrix elements of \hat{y} can be obtained from the corresponding matrix elements of \hat{x}.
(j) Give the major steps involved in using the Ritz variation method.

Question 2 (20 marks)

(a) The number state vector $n\rangle$ of a quantized harmonic oscillator satisfies the state transition algebraic relations

$$
\hat{a}|n\rangle=\sqrt{n}|n-1\rangle ; \quad \hat{a}^{+|n\rangle=\sqrt{n+1}|n+1\rangle}
$$

(i) Identity the operators \hat{a} and \hat{a}^{+}.
(ii) Show that
(b) The angular momentum in spherical coordinates is given by

$$
\vec{L}=-i \hbar\left(\hat{\phi} \frac{\partial}{\partial \theta}-\hat{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\right)
$$

(i) Express $\hat{\theta}$ and $\hat{\phi}$ in terms of the rectangular unit vectors \hat{i}, \hat{j} and \hat{k}, hence obtain $\hat{L_{x}}, \hat{L_{y}}$ and $\hat{L_{z}}$. (5 marks)
(ii) Obtain the lowering operator $\hat{L_{-}}$.
(c) Angular momentum operators can be defined by the following matrices:

$$
\hat{L}_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{l}
\mathbb{Q} \\
\mathbb{Q} \\
\mathbb{Q}
\end{array}\right) ; \hat{L}_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{l}
\theta i \\
\theta i \\
\mathbf{0}
\end{array}\right) ; \hat{L}_{z}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{l}
\mathbb{0} \\
0 \\
\theta 1
\end{array}\right) .
$$

Determine the commutation bracket $\left[\hat{L_{x}}, \hat{L_{y}}\right]$ in terms of $\hat{L_{x}}, \hat{L_{y}}$ and $\hat{L_{z}}$.

Question 3 (20 marks)

(a) Prove by direct matrix multiplication that the Pauli matrices

$$
\sigma_{x}=\binom{\mathbb{Q}}{\mathbb{Q}} ; \quad \sigma_{y}=\binom{\theta i}{\mathbb{0}} ; \quad \sigma_{x}=\binom{\mathbb{0}}{\theta 1}
$$

anticommute and they follow the commutation relations $\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, x, y, z$ cyclic.
(b) For an electron, it is given that

$$
\left.\left.\left.\hat{S}^{2} s, m_{s}\right\rangle=\hbar^{2} s(s+1) s, m_{s}\right\rangle, \hat{S}_{z} s, m_{s}\right\rangle=\hbar m_{s}
$$

(i) State what is represented by \hat{S}, sand m_{s}. (3 marks)
(ii) Express the state of the electron in terms of the up and down spinors, $\chi_{+, \chi_{-} .}(4$ marks $)$
(c) Derive the Heisenberg's equation of motion.

Question 4 (20 marks)

(a) For the hydrogen atom, use the Schroedinger equation in spherical coordinates to show that the allowed energies are given by

$$
\begin{equation*}
E_{n}=-\left[\frac{m}{2 \hbar}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}} \quad n=1,2,3, \ldots \tag{13marks}
\end{equation*}
$$

(b) A particle of charge q and mass m , which is moving in a one-dimensional harmonic potential of frequency ω, is subject to a weak electric field ε in the x-direction. Find an exact expression for its energy, and the energy to first nonzero correction, using perturbation theory.

Question 5 (20 marks)

(a) Discuss the differences between bosons and fermions, giving examples of each.
(b) Given the commutators

$$
\left[\hat{L}_{z}, x\right]=i \hbar y, \quad\left[\hat{L}_{z}, y\right]=i \hbar x, \quad\left[\hat{L}_{z}, z\right]=0
$$

use the quantum numbers $\mathrm{n}, 1$ and m to show that the selection rule for m is $\Delta m= \pm 1$ or 0 .
(7 marks)
(c) The Schroedinger equation of a particle confined to the positive x -axis is

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+m g x \Psi=E \Psi
$$

where $\Psi(0)=0, \Psi(x) \rightarrow 0$ as $x \rightarrow \infty$ and E is the energy eigenvalue. Use the trial function $x \exp (-a x)$ to estimate the energy, and hence obtain the best value of the parameter a.

