JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
2021/2022 EXAMINATIONS

MAIN SPECIAL
COURSE CODE: SPH 205
COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS II
EXAM VENUE: STREAM: EDUCATION
DATE:
EXAM SESSION:
TIME: 2:00 HRS
Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION I (30 MARKS)

Question 1 (Compulsory)

(a) Define the following terms:
(i) Essential singularity. (2 marks)
(ii) Power series.
(1 mark)
(b) (i) State the fundamental theorem of algebra.
(ii) A complex number is given as $\mathrm{z}=3+\mathrm{i}$. Write z in polar form.
(c) Evaluate $(-\sqrt{3}-i)^{-12}$
(d) Find the Euclidean inner product $\langle[1, i],[0,2 i]\rangle$.
(e) Given the system of linear equations

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}=a_{3} \\
& b_{1} x_{1}+b_{2} x_{2}=b_{3}
\end{aligned}
$$

obtain an expression for x_{2} in the form of a ratio of two determinants.
(f) Evaluate f_{x} and f_{y} for the function $f(x, y, z)=x^{2} y^{3}+2 x y z-3 y z$ at the point $(-2,1,2)$.
(g) Find the determinant of $A=\left(\begin{array}{l}\mathbf{z} 3 \\ \mathbf{2} 1 \\ \mathbf{z} 1 \\ \mathbf{0}\end{array}\right)$.
(4 marks)
(h) Find the general solution of the differential equation $x^{\prime}+a x=0$
(i) Show that in a Fourier series of a function $\mathrm{f}(\mathrm{x})$ in the interval $[-\pi, \pi]$, the Fourier coefficient a_{0} is given by

$$
\begin{equation*}
a_{0}=\frac{1}{2 \pi} \int f(x) d x \tag{4marks}
\end{equation*}
$$

Question 2 (20 marks)

(a) Determine the partial second order derivatives of $f(x, y)=x \cos y+y e^{x}$, hence show that the second partial derivative is a commutative operation.
(8 marks)
(b) Show that the function $\mathrm{f}(\mathrm{z})=\mathrm{e}^{-\mathrm{y}} \cos x+\mathrm{ie}^{-\mathrm{y}} \sin x$ satisfies the Cauchy-Riemann conditions, hence find $f^{\prime}(z)$.
(c) Given the Euler's formula, derive de Moivre's theorem.

Question 3 (20 marks)

(a) Find the linearization of $f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3$ at the point (3,2). (9 marks)
(b) Investigate whether the following linear system of equations can be solved using Cramer's rule.
(c) Show that the set $S=\left\{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right\}$ is orthonormal.
(4 marks)

Question 4 (20 marks)

(a) (i) Name an eigenvalue equation in quantum mechanics.
(ii) Let $B=\binom{1}{42}$.Find the eigenvalues of B and the associated eigenvectors.
(b) Show that the following linear system of equations can be solved using Cramer's rule.

$$
\begin{gather*}
-2 x_{1}+3 x_{2}-x_{3}=1 \\
x_{1}+2 x_{2}-x_{3}=4 \tag{7marks}\\
-2 x_{1}-x_{2}+x_{3}=-3
\end{gather*}
$$

Question 5 (20 marks)

(a) Given the basis $S=\left\{\vec{X}_{1}, \vec{X}_{2}, \vec{X}_{3}\right\}$ for \mathbb{R}^{3}, where

$$
\vec{X}_{1}=[1,1,1], \vec{X}_{2}=[-1,0,-1] \text { and } \vec{X}_{3}=[-1,2,3]
$$

use the Gram-Schmidt process to transform S to an orthonormal basis for \mathbb{R}^{3}.
(b) Determine $\operatorname{Re}[(1+\mathrm{i})(2+\mathrm{i})]$.
(c) Find the Fourier series for the function

$$
f(x)=\left\{\begin{array}{c}
0,-\pi \leq x \leq 0 \\
x, 0 \leq x \leq \pi
\end{array}\right.
$$

marks)

