

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL PHYSICAL MATHEMATICS AND ACTUARIAL

SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF ACTUARIAL SCIENCE WITH IT

2ND YEAR 1ST SEMESTER 2023/2024 ACADEMIC YEAR REGULAR MAIN CAMPUS

COURSE CODE: WAB 2205

COURSE TITLE: SAMPLE SURVEY

EXAM VENUE:

STREAM:

DATE:

EXAM SESSION:

TIME: 2.00 HOURS Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a)	Outline SIX causes of Non – sampling error.	(6 Marks)					
b)	From the list of 2000 names and addresses, a simple random sample of 2	250 names is					
	selected without replacement and 50 wrong addresses found.						
	i. Estimate the number of addresses that needs correction from the	list.					
		(2 Marks)					
	ii. Calculate the standard error of the above estimate.	(2 Marks)					
c)	Outline FOUR cases under which sample survey approach may not be recommended						
	for the study of population.	(4 Marks)					
d)	In a simple random sampling without replacement, show that the sample variance						
	which is unbiased estimator of the adjusted population variance is given	by					
	$E(s^2) = \sigma^2$	(10 Marks)					
e)	A population of 430 units has a mean $\overline{x} = 19$ and variance $\overline{x} = 85.6$. Ho	w many units					
	should be selected for estimating \overline{x} within 10% of \overline{x} apart from a chance of 1 in 20						
		(4 Marks)					
-							

f) Give TWO limitations of complete enumeration. (2 Marks)

QUESTION TWO (20 MARKS)

a) A sample of 40 students is to be drawn from a population consisting of 500 students belonging to colleges A and B. The means and standard deviations are given below

College	Number of students N_i	Mean $\overline{Y}i$	s _i
А	300	30	10
В	200	60	40

- i. Determine the sample sizes that would be drawn using proportional allocation and Neyman allocation. (4 Marks)
- ii. Find the sample variance of the estimator of the population mean given by Proportional allocation and Neyman allocation (10 Marks)
- iii. Verify that $\operatorname{var}(\overline{y}_{st})_{opt} < \operatorname{var}(\overline{y}_{st})_{prop}$ (2 Marks)
- b) Highlight FOUR causes of sampling error. (4 Marks)

QUESTION THREE (20 MARKS)

Consider a population of 6 units whose values are 2, 3, 4, 5, 6, and 7. Write down all possible samples of size 2 without replacement from this population. Hence show that

a)
$$E(\overline{y}) = \overline{Y}$$
 (5 Marks)

b)
$$E(s^2) = \sigma^2$$
 (5 Marks)

c)
$$\operatorname{var}(\overline{y}) = \frac{N-n}{Nn} \bullet S^2$$
 (5 Marks)

d) Verify that $\operatorname{var}(\overline{y})_{SRSWOR} < \operatorname{var}(\overline{y})_{SRSWR}$ (5Marks)

QUESTION FOUR (20 MARKS)

- a) Show that in a simple random sampling without replacement, the variance of mean sample is given by $var(\overline{y}) = \frac{N-n}{nN}S^2$ (10 Marks)
- b) A simple random sampling of 15 north south ships were selected from the 386 mile wide study region so that n = 15 and N = 386. The number of carbon in the 15 sampled units were 2, 60, 31, 108, 12, 46, 14, 39, 17, 25, 96, 20, 31, 15 and 14. Find

1 mu		
i.	The sample mean	(2 Marks)
ii.	The sample variance	(2 Marks)
iii.	The estimated variance of the sample mean	(2 Marks)
iv.	An estimate of the total number of carbon in the study region	(2 Marks)
v.	The estimate of variance of the population total	(2 Marks)

QUESTION FIVE (20 MARKS)

- a) Show that under proportional allocation, the variance of systematic sampling is given by $\operatorname{var}(\overline{y}_{st})_{prop} = \left(\frac{1}{n} - \frac{1}{N}\right) \sum_{i=1}^{k} \omega_i S_i^2$ (5 Marks)
- b) In a farm containing 412 fruit bearing guava trees, 15 clusters each containing 4 trees were selected and yields in Kg were recorded as shown below.

Cluster	1	2	3	4	5	6	7	8	9	10	11
1 st tree	5.53	26.11	11.08	12.66	12.87	0.82	54.21	1.94	37.94	56.92	27.59
2 nd tree	4.84	10.93	0.65	32.52	3.56	11.68	34.63	35.97	47.69	17.69	37.90
3 rd tree	0.69	19.08	4.21	16.92	4.81	40.05	32.55	29.54	16.94	26.24	5.15
4 th tree	15.79	11.18	7.56	37.02	57.54	5.15	37.96	28.11	6.77	6.53	9.86

Cluster	12	13	14	15
1 st tree	45.98	7.13	14.23	3.58
2 nd tree	5.17	34.35	16.89	40.76
3 rd tree	24.76	1.17	12.18	28.93
4 th tree	25.98	6.77	21.7	1.25

Estimate the average yield in kilogram per tree and population standard error.

(15 Marks)