

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BUSINESS & ECONOMICS UNIVERSITY EXAMINATION FOR MASTER OF LOGISTICS AND SUPPLY CHAIN

MANAGEMENT

1ST YEAR 1ST SEMESTER 2023/2024 ACADEMIC YEAR

MAIN & KISUMU CAMPUS

COURSE CODE: MBM 5112

COURSE TITLE: QUANTITATIVE ANALYSIS FOR DECISION MAKING

DATE: 30/04/2024

EXAM SESSION: 9.00 – 11.00 AM

DURATION: 3 HOURS.

INSTRUCTIONS

- 1. Answer any FOUR questions
- 2. Show ALL your workings and be as NEAT as possible.
- 3. Candidates are advised not to write on the question paper
- 4. Marks allocated to each question are shown at the end of the question.

Question One

- a) Briefly explain what you understand by each of the following, giving an example in each case:
 - (i) Scalar matrix
 - (ii) The earliest start time of an activity
 - Non-negativity requirement in linear programming (iii)
 - The total time spent in a queuing system (iv)
- b) Solve the following using matrix algebra;

8X	+	5Y	=	90
6X	+	4Y	=	66

c) A cost accountant developed the weekly marginal revenue (MR) and the total cost (TC) functions based on the level of output (Q) as given below:

MR = 280 - 4Q

 $TC = Q^2 - 80Q + 3,600$

Using the above functions, you are required to determine:

(i) The revenue maximizing level of output and the maximum revenue

	[4 Marks]
(ii) The profit maximizing output and the maximum profit	[6 Marks]

d) Customers arrive at the First Class Ticket Counter of a Theatre at the rate of 15 per hour. There is one clerk serving the customers at the rate of 27 per hour.

(i)	What is the probability that the sever at the counter is idle	[2 marks]
(ii)	How long does a customer wait in the queue for a ticket	[2 marks]
(iii)	How many customers are expected to be on the queue	[2 marks]

Question Two

a) Explain the following terms as used in network

- (i) Network diagram
- (ii) Critical activity
- (iii) Pessimistic time
- b) You are provided with the following information relating to a project made up of 8 activities, A-H.

		Activity duration in weeks			
Activity	Predecessor	Optimistic	Most likely	Pessimistic	
А	-	3	6	9	
В	-	2	5	8	
С	А	2	4	6	
D	В	2	3	10	
E	В	1	3	11	

[8 Marks]

[6 Marks]

[6 Marks]

	F	E	4	6	8		
	G	F	1	5	15		
	Н	C,D,E	2	5	8		
Required:							
i) Prep	[5 Marks]						
ii) Dete	[8 Marks]						
<i>iii)</i> Com	[4 Marks]						

Question Three

a) Briefly, explain four assumptions of linear programming [6 Marks]

b) Solve the following linear programming problem graphically and show the optimum solution

[14 Marks]

Max Z = 200X + 120YSubject to $60X+40 Y \le 2400$ $X \le 300$ $Y \le 400$ $X_1, Y \ge 0$

Question Four

a)	a) Outline four requirements for the transportation model						[4	l marks]	
b)	b) A bakery stocks a popular brand of cake. The bakery operates six days in a week.						a week. T	he daily	
	demand in cartons based on past experience is given below:								
	Demand	0	5	10	15	20	25	30	35
	Probability	0.03	0.08	0.15	0.25	0.21	0.14	0.09	0.05
	Using the following series of random numbers, simulate the demand for the next two weeks								
	[48,94,06,78,	36,77,18,	29,68,87,3	32,54]					[8 marks]

c) Four different jobs can be done by four different machines. The costs associated with set up and running the machines for the four jobs/ machines are as shown below:

		Machines				
		M1	M2	M3	M4	
	J1	5	7	11	6	
	J2	8	5	9	6	
Jobs	J3	4	7	10	7	
	J4	10	4	8	3	

Required

Determine how the jobs should be assigned to the machines in order to minimize costs

[8 marks]

Ouestion Five

a)	Explain any four assumptions of game theory.			
b)	Briefly	y explain each of the following terms as used in quantitative analysis		
	(i)	Transition matrix	[2 marks]	
	(ii)	Technological matrix	[2 marks]	
	(iii)	Pure strategy game	[2 marks	
	(iv) Shadow price			
	(v)	Feasible region	[2 marks]	
c)	Justify	the study of quantitative methods to a business entity.	[6 marks]	