JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTURIAL SCIENCES UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF \qquad $2^{\text {ND }}$ YEAR $2^{\text {ND }}$ SEMESTER 2023/2024 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: WMB 9205

COURSE TITLE: VECTOR ANALYSIS
EXAM VENUE:
STREAM:

DATE:
EXAM SESSION:
TIME: 2.00 HOURS
Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a) Show geometrically that addition of vectors is associative i.e. $\underset{\sim}{P}+(\underset{\sim}{Q}+\underset{\sim}{R})=(\underset{\sim}{P}+\underset{\sim}{Q})+\underset{\sim}{R}$ (5 marks)
b) Find the unit vector \hat{a} in the direction of the vector $\vec{A}=2 \vec{B}+3 \vec{C}$ if $\vec{B}=2 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{C}=\hat{i}+4 \hat{j}+\hat{k} \quad(5$ marks)
c) Find the angle θ between the vectors $\vec{U}=3 \hat{i}+2 \hat{j}+6 \hat{k}$ and $\vec{V}=2 \hat{i}-\hat{j}+2 \hat{k}$ (5 marks)
d) Prove that the area of a parallelogram with sides \vec{A} and \vec{B} is $|\vec{A} \times \vec{B}|$ (5 marks)
e) If $\vec{A}=x z^{3} \hat{i}+2 x^{2} y z \hat{j}+2 y z^{4} \hat{k}$, find $\operatorname{Curl} \vec{A}$ at $(1,-1,1)$ (5 marks)
f) If $\vec{A}=2 y z \hat{i}-x^{2} y \hat{j}+x z^{2} \hat{k}$ and $\phi=2 x^{2} y z^{3}$, find $(\vec{A} \cdot \nabla) \varphi$ (5 marks)

QUESTION TWO (20 marks)

a) Given that $\vec{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}$ and $\vec{B}=B_{1} \hat{i}+B_{2} \hat{j}+B_{3} \hat{k}$.

Show that $\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3}\end{array}\right|$ (6 marks)
b) Find the projection of the vector $\vec{A}=4 \hat{i}-4 \hat{j}+7 \hat{k}$ on the vector $\vec{B}=\hat{i}-2 \hat{j}+\hat{k}$ (4 marks)
c) Prove that $\nabla \times(\nabla \times \vec{A})=-\nabla^{2} \vec{A}+\nabla(\nabla \cdot \vec{A})$ where $\vec{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}$ (10 marks)

QUESTION THREE (20 marks)

a) Find $\operatorname{grad} \phi$ at the point $(1,-2,1)$ if $\phi(x, y . z)=3 x^{2} y-y^{3} z^{2}$
b) Given $\phi(x, y . z)=x^{2} y z^{3}$ and $\vec{A}=x z \hat{i}-x y^{2} \hat{j}+y z^{2} \hat{k}$, find $\frac{\partial^{2}(\varphi \vec{A})}{\partial x \partial z}$ at the point (1,-1,1) (5 marks)
c) Evaluate $(2 \hat{i}-3 \hat{j}) \cdot[(\hat{i}+\hat{j}-\hat{k}) \times(3 \hat{i}-\hat{k})]$ (4 marks)
a) If $\vec{A}=10 x^{3} y z \vec{i}-6 x z^{3} \vec{j}+4 x z^{2} \vec{k}$ and $\quad \vec{B}=8 z \vec{i}+3 y \vec{j}-7 x^{2} \vec{k}$, Find $\frac{\partial^{2}}{\partial x \partial y}(\vec{A} \times \vec{B})$ at $(3,5,2)(6$ marks)

QUESTION FOUR (20 marks)

a) Find a unit vector perpendicular to the plane of $\vec{i}-2 \vec{j}+3 \vec{k}$ and $3 \vec{i}+\vec{j}+2 \vec{k}$, (6 marks)
b) If $\vec{F}=(2 y+3) \underset{\sim}{i}+x \underset{\sim}{j} \underset{\sim}{j}+(y z-x) \underset{\sim}{k}$, evaluate $\int_{C} \underset{\sim}{F} . d \underset{\sim}{r}$ along the following paths c :
(i) $x=2 t^{2}, y=t, z=t^{3}$ from $t-0$ to $t=2$ (4 marks)
(ii) the straight lines from $(0,0,0)$ to $(0,0,1)$, then to $(0,1,1)$ and then to $(2,1,1)$ (6 marks)
(iii) the straight line joining $(0,0,0)$ and $(2,1,1)$ (4 marks)

QUESTION FIVE (20 marks)

a) Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$, where $\vec{A}=18 z \hat{i}-12 \hat{j}+3 y \hat{k}$ and S is that part of the plane $2 x+3 y+6 z=12$ which is located in the first octant. (10 marks)
b) Verify stokes' theorem for $\vec{A}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.

