

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION/

ACTUARIAL SCIENCES

2ND YEAR 2ND SEMESTER 2023/2024 ACADEMIC YEAR

(MAIN)

COURSE CODE: WMB 9208

COURSE TITLE: INTRODUCTION TO ANALYSIS

EXAM VENUE: STREAM: (BSc. Actuarial/Education)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

- a) Define the following terms
 - i) An open set. (2 marks)
 - ii) A point of accumulation. (2 marks)
- b) Show that intersection of any two open sets is open. (3 marks)
- c) Show that there is no number whose square root is 2. (6 marks)
- d) If $A = \{2, 3, 6, 8\}, B = \{1, 2.4.6.9\}$ and $U = \{1, 2, ..., 9\}$. Find
 - i) $A^C \cap B$ (2 marks)
 - ii) $A \setminus B$. (2 mark)
- e) Given that $A = \{2,8\}, B = \{x, y, z\}$
 - i) Find $B \times A$. (2 marks)
 - ii) Determine the power set of A. (3 marks)
- f) State the point of discontinuity Determine the limit of the following function and.

$$f(x) = \frac{x^2 - x - 12}{x - 4}$$
 as $x \to 4$. (5 marks)

g) Determine the boundary of the set $D = \{(x, y): x^2 - y^2 < 1\}$ at the point $x = \frac{1}{2}$.

(3 marks)

QUESTION TWO (20 marks)

- a) Let $f(x) = 2x^2$, g(x) = 2x 1 and $h(x) = \frac{3}{4}x 2$
 - i) Show that $f \circ g \neq g \circ f$. (4 marks)
 - ii) Find $f \circ g(1)$. (2 marks)
 - iii) Determine $h^{-1}(x)$, the inverse of h. (3 marks)
- b) Use the definition of limits to show that the limit of f(x) = 5x 3 is equal to 7 as $x \to 2$. (4 marks)
- c) Let g(x) = 3x 4. Prove that g is uniformly continuous on \mathbb{R} . (4 marks)
- d) Let $X = \{2,5\}$. Determine a relation, R on X such that $R = \{(x,y): x \le y\}$. Hence or otherwise obtain R^{-1} .

QUESTION THREE (20 marks)

- a) Define the terms
 - i) A Monotonically decreasing sequence.

(2 marks)

ii) A convergent sequence.

(2 marks)

- b) Show that if the limit of a convergent sequence exists, then it is unique. (5 marks)
- c) Given the sequence $x_n = 1 \frac{1}{n}$, $n \in \mathbb{N}$. List the first 3 elements of the sequence and determine its monotonicity. (3 marks)
- d) Determine the limit of the function $f(x) = \frac{2x^2 + 5x 4}{4x^2 2x}$, as $x \to \infty$. (3 marks)
- e) Show that the upper half-plane $Q = \{(x, y): y > 0\}$ is open in \mathbb{R}^2 . (5 marks)

QUESTION FOUR (20 marks)

- a) Define the following terms
 - i) Lower bound of a set.

(2 marks)

ii) Supremum of a set.

(2 marks)

- b) Determine the lower bound and upper bound of the following sets.
 - i) $P = \{-1 \le p \le 3\}$.

(2 marks)

ii) $Q = \left\{1 - \frac{1}{n}\right\}, n \in \mathbb{N}.$

(2 marks)

- c) Let *X* be a bounded set. If the supremum does exist then show that the supremum is unique. (4 marks)
- d) Show that the union of any two open sets is open.

(3 marks)

e) Show that a set is closed if and only if its complement is open.

(5 marks)

QUESTION FIVE (20 marks)

- a) By using the definition of a field, determine whether the set of integers \mathbb{Z} , is a field or not. (10 marks)
- b) State and prove the Bolzano-Weierstrass Theorem of sequences. (10 marks)