

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND

TECHNOLOGY

SCHOOL OF BIOLOGICAL PHYSICAL MATHEMATICS AND ACTUARIAL

SCIENCE (SBPMAS)

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS/SPECIAL EDUCATION 3RD YEAR 2NDSEMESTER 2023/2024 ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: WMB 9302 COURSE TITLE: COMPLEX ANALYSIS

EXAM VENUE:

STREAM: BED SCIENCE Y3S2

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) - 30 MARKS

- a) Define each of the following terms as used in complex analysis
 - i) A circleii) Deleted neighbourhood

- (4 marks)
- b) Write $\frac{i}{\sqrt{3}+i}$ in exponential form using the principal argument (6 marks)
- c) Determine the value of $f(z) = z\overline{z}^2$ at the point 1+i giving your answer in the form a+bi (4 marks)
- d) Sketch the disk represented by $0 < |Z-1+2i| \le 2$ hence
 - i) State the deleted neighbourhood (4 marks)
 - ii) State any two boundary points (2 mark)

- iii) State any two points in the neighbourhood of the disk (2 mark)
- e) Describe all the transformations represented by a complex mapping f(z) = (1+i)z 3 2i (4 marks)
- f) Show that the function $f(x) = 3x^2y^2 6ix^2y^2$ is not analytic at any point but differentiable only along the coordinate axes (4 marks)

QUESTION TWO (20 MARKS)

- a) Find the value of $(1 \sqrt{3}i)^i$ (5 marks) b) Given two complex numbers $z_1 = 3\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ and $z_2 = 2\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$ determine i) $\overline{z}_1\overline{z}_2$. ii) $\frac{z_1}{z_2}$ (5 marks) c) Solve the compex quadratic equation $z^2 - (1+i)z + 6 - 17i = 0$
- c) Solve the compex quadratic equation $z^2 (1+i)z + 6 17i = 0$ (5 marks)
- d) Find the image of a line y = -2 under the complex mapping $w = z^2$ for w, $z \in \mathbb{C}$, hence sketch the line and its image under the mapping (5 marks) **QUESTION THREE (20 MARKS)**
- a) Determine the expression for the nth root of -1 hence determine $(-1)^{\frac{1}{4}}$ and sketch an appropriate circle indicating the roots w_0 , w_1 , w_2 and w_3 (5 marks)
- b) Use L'Hopital's rule to compute

$$\lim_{z \to 1+\sqrt{3}i} \frac{z^2 - 2z + 4}{z - 1 - \sqrt{3}i}$$
(5 marks)

- c) Given the complex function f(z) = u(x, y) + iv(x, y), verify that the function $u(x, y) = x^2 y^2$ is harmonic hence find v(x, y) the harmonic conjugate *u*,Hence find the corresponding analytic function f(z) = u + iv, such that f(1+i) = 3-2i (6 marks)
- d) Compute the principal value of the complex logarithm $\ln z$ for $z = \sqrt{2} + \sqrt{2}i$ (4 marks)

QUESTION FOUR (20 MARKS)

- a) Use De-Moivre's theorem to evaluate $(1 \sqrt{3}i)^4$, giving your answer in the form a + bi, $a, b \in \mathbb{R}$ (5 marks)
- b) Evaluate the line integral $I = \oint_{c} (x^2 dx y dy)$ where *C* comprises the triangle O(1,0), A(1,1) and C(0,0) (5 marks)
- c) Shoe that the function $f(z) = \frac{z^2 + 1}{z + i}$, is discontinuos at the point $z_0 = -i$ (5 marks)
- d) Use the definition of the derivative of a complex function to determine the derivative of $f(z) = 4z^2 + z$ in the region where the derivative exists. (5 marks)

QUESTION FIVE (20 MARKS)

- a) Prove that if a complex function f(z) = u(x, y) + iv(x, y) is analytic at any point z, and in the domain D, then the Laplace's equation ∂²u/∂x² + ∂²u/∂y² = 0, can be verified.
 b) Find the derivative of (z² (2+i)z)²
 (4 marks)
- c) Solve for w, given the complex function $e^{w} = 4 + i$ for $w, \in \mathbb{C}$. (6 marks)
- d) Evaluate the integral $\oint_c \frac{z}{z^2 + 16} dz$, where *C* is the circle |z 2i| = 4 using the Cauchy's integral formular. (4 marks)