

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION 3RD YEAR 1ST SEMESTER 2023/2024 ACADEMIC YEAR

(MAIN)

COURSE CODE: WMB 9312

COURSE TITLE: GROUP THEORY

EXAM VENUE:

STREAM: (EDUCATION)

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

a)	Define the following terms as used in Group Theory				
	i) A homomorphism from a group $(G,*)$ to another group (H, \dagger) .	(2 marks)			
	ii) The centre of a group G .	(2 marks)			
	iii) The index of a subgroup.	(1 mark)			
b)	Let $(G,*)$ be a group. Then prove that for each element $x \in G$, the inve	rse \bar{x} in (<i>G</i> ,*)			
	is unique.	(4 marks)			
c)	Determine whether the set (\mathbb{Z}, \cdot) is a group or not, where \cdot is the usual n	nultiplication			
	on Z.	(5 marks)			
d)	Explain why the following subset of \mathbb{Z} is not subgroup of $(\mathbb{Z}, +)$:				
	The set $\{n \in \mathbb{Z} : n \ge 0\}$ of all non-negative integers.	(2 marks)			
e)	Let G be a group. If $a, b, c \in G$ with $ab = cb$, then show that $a = c$.	4 marks)			
f)	If <i>n</i> is a positive integer, then show that the set $n\mathbb{Z} := \{nk: k \in \mathbb{Z}\}$ of a	ll multiples of			
	n is a subgroup of $(\mathbb{Z}, +)$.	(4 marks)			
g)	Determine the order of the following				
	i) $2 \in (\mathbb{Z}_7, \cdot)$.	(2 marks)			
	ii) (ℝ, +).	(1 mark)			
h)	Show that every subgroup of an abelian group in a normal subgroup.	(3 marks)			

QUESTION TWO (20 marks)

- a) Consider the group $(\mathbb{Z}_5 \setminus \{0\}, \times)$.
- i) Draw the Cayley table of the cyclic group, $(\mathbb{Z}_5 \setminus \{0\}, \times)$. (4 marks)
- ii) Determine the identity element of the group. (1 mark)
- iii) Determine the inverse of each element of the group. (4 marks)
- iv) Determine the subgroups of the group, $(\mathbb{Z}_5 \setminus \{0\}, \times)$. (4 marks)
- v) Determine the generators of $(\mathbb{Z}_5 \setminus \{0\}, \times)$. Is the group cyclic? (3 marks)
- b) If *a* is an element of a group of order *n*, then show that $a^n = e$, where *e* is the identity element of the group. (4 marks)

QUESTION THREE (20 marks)

a)	Define the term permutation in group theory					(2 marks)				
b)	Let $\alpha = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 4	3 2	4 1	$\binom{5}{5}$ and $\beta = \left(\frac{1}{2} \right)$	1 4	2 3	3 2	4 5	$\binom{5}{1}$ be permutations.

i)	Compute $\alpha \circ \beta$ and $\beta \circ \alpha$ giving your answer both in matrix	and cycle
	notation.	(6 marks)
ii)	Determine α^{-1} giving your answer both in matrix and cycle i	notation.
		(2 marks)
iii)	Draw the graphs for α and β .	(4 marks)
iv)	Determine the sign of β	(2 marks)
c) W	rite the following permutation (1,2,3)(4,6,8) in matrix notatio	n. (2 marks)
d) St	ate the First Isomorphism Theorem.	(2 marks)

QUESTION FOUR (20 marks)

a)	Fill in the missing parts of t	he Cayley table of a	group given below.	(4 marks)
	01	5 5		· · · · ·

*	a	b	c
а	с		
b			c
c			

- b) Determine the identity element of the group in a) above. (1 mark)
- c) Determine the inverse of each element in the group in a) above. (4 marks)
- d) Let $f: G \to H$ be a homomorphism from a group (G, *) and (H, \dagger) . Define
 - i) The image of f. (2 marks)
 - ii) The kernel of f. (2 marks)
- e) Use the subgroup test to prove that the centre of a group, Z(G) is a subgroup of a group.G.(7 marks)

QUESTION FIVE (20 marks)

- a) Let $(G,*), (H, \odot)$ and (M, \dagger) be groups, $f: G \to H$ and $g: H \to M$ be homomorphisms. then prove that $f \circ g: G \to M$ and $g^{-1}: M \to H$ are also homomorphisms. (10 marks)
- b) Let *H* be a normal subgroup of *G*. Then show that $G \setminus H$ is a group under multiplication of left cosets and that the mapping $\phi: G \to G \setminus H$ defined by $\phi(a) = aH, \forall a \in G$ is a homomorphism. (10 marks)