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ABSTRACT

There has been a vast growth both in mathematical and physical science literature on
indecomposable positive maps. However, the questions of decomposability seems to
have been ignored. The motivation behind this study was based on the work done by
Yang, Leung and Tang in which they enquired if there exist indecomposable 2-positive
maps from M;3(C) to My(C)). The objectives of this study were; to construct lin-
ear positive maps Y (uc,,..c,_,) from M, to M, on positive semidefinite matrices;
to establish the conditions for the positivity of linear maps v,c,...c,_,) from M, to
M, 11, characterize the structure of the Choi matrices for 2—positive and complete
(co)positive of maps from M, to M,,; on positive semidefinite matrices and; fi-
nally to establish the conditions for the decomposability of the linear positive maps
Y(uer,.en_y) ON Positive semidefinite matrices for n = 2,3,4. The methodology in-
volved the use of tensor product approaches and matrix inequalities. Choi matrix
was used to deduce conditions for complete positivity while Stgrmer decomposability
criteria was used to investigate decomposability by employing the use of Mathematica
software for analysis. The decomposability of the maps ¢, .....c,_,) Was described for
n = 2,3,4. A special map ¥, ,) from M3(C) to My(M;(C)) where the Choi ma-
trices was visualized as tensor matrix M3 ® My with My (C) as the entry elements to
achieve decomposability via partial transposition. The study has significance addition
in mathematics and applications relevant to problems encountered in mathematical
science and their related subjects, more specific in quantum information theories. The
linear maps ¥(,c,,..c,_,) are completely positive maps. We believe the mathemati-
cal structure of these positive maps (., ....c,_,) are useful in showing entanglement
breaking using suitable indecomposable maps. The Choi matrices generated by the
linear map W, ., ,) with block-matrix element transposition as unique addition will

elicit new concepts in the study of completely positive matrix operators.
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Chapter 1

INTRODUCTION

1.1 Mathematical background

Positive linear maps on C*-algebras, mainly those of finite dimensions have been more
significantly applied in quantum information theory and quantum channels. Stine-
spring [84] initiated the concept of completely positive maps with the representation (or
dilation) theorem which was later developed by Arveson [2],|1] who found its applica-
tion in operator theory and then was further developed in the fields of operator algebra
and mathematical physics. Choi [17] deduced that for a positive linear map between
C*-algebras, 1-positivity corresponds to 2-positivity if and only if either of them is
commutative. However, in the case of matrix algebras Choi [18] showed there was a

difference between k-positivity and k + 1-positivity.

Stermer [85] obtained clear formulas showing decomposable map on the bi-optimal
map when the spin factor is irreducible and limited to a square matrix of order 27 1.
Stgrmer [90] looked at the definite set of a positive map on a C*-algebra of selfadjoint
operators in M, such that 1(A4?%) = 1(A)?, and showed that if the linear map is a
separable state, then the image of the definite set is a C*-subalgebra of the center of

the C*-algebra generated by ¥(A).

The well known result by Choi [15] states that a linear map 1) is completely positive



if and only if the Choi matrix is positive semidefinite. Cho et al [10] constructed a
family of generalized Choi maps in which they described the conditions under which
the Choi map was described in relation with positive semidefinite biquadratic form are
decomposable by showing that 2-positivity or 2-copositivity implies decomposability.
The Yang et al [106] used this idea of decomposition to obtain a decomposition theorem
for k-positive linear maps from M,,(C) to M,,(C), where 2 < k < min{m,n} and
concluded that all 2-positive linear maps from M,,(C) to M,,(C)) are decomposable.
As a consequence they affirmed answer to Kye’s conjecture [55] that every 2-positive

linear map is decomposable for n = m = 3.

Woronowicz [105] provided an example of indecomposable map giving an indirect proof
of positive linear maps from My(C) to My(C) in a similar manner to the example
given by Choi in [16]. Osaka [73| provided stronger indecomposable maps in M,,(C)
by classifying a series of positive linear maps for n = 4,5 with respect to the degree of
indecomposability. Connecting the relationship between positive maps and quantum
states, Terhal [98] developed a method to create a family of indecomposable positive
linear maps on matrix algebras M,,(C) for any n > 2. Then constructed indecompos-
able maps with the notion of an unextendible product basis with examples in arbitrary

high dimensions.

By exposedness of positive linear map, Ha 30| constructed and described an exposed
indecomposable positive linear map and showed that the extreme points of the dual
face in separable state are parameterized by the Riemann sphere. Gale [24] showed
that circles parallel to the equator in the Riemann sphere behave exactly the same way
as the trigonometric moment curve . Li and Wu [61] studied the positive linear maps
on matrix algebras [30] and gave the conditions under which these maps are completely
positive, atomic, and decomposable. Li and Wu [61] extended the idea fronted by Hou
[41] to show that Choi’s matrix is decomposable as the sums of completely positive

map and positive partial transpose map.



Eom and Kye [23], used duality as a method to examine decomposition between the
spaces of bounded linear operators from M, into M,, with the projective tensor
product after Woronowicz [105] showed every positive linear map that maps the matrix
My to M,, can be expressed as a combination of completely positive map and a
completely copositive linear map provided n < 3. Stgrmer [91] used duality technique
to show extension of positive linear maps. Ha [27] used the duality concept [23] to
show that the examples given by Choi [16], Choi and Lam [14], Kim and Kye [47| and
Robertson [79] are neither 2-positive nor 2-copositive but are atomic maps because
they could not be expressed as a combination of 2-positive and 2-copositive linear

maps.

Marciniak and Rutkowski [69] provide a scheme for constructing examples of posi-
tive maps by the merging procedure. Further, they provided necessary and sufficient
conditions for such merging to attain 2-positivity and either complete positivity or
indecomposability with the claim that the canonical merging is a composition of com-
pletely positive and completely copositive maps. Majewski and Marciniak in [67],
using an extremal unital positive map v from My(C) to M3(C) constructed posi-
tive linear maps 1, and 1y that were not necessarily unital as positive and coposi-
tive(respectively). The decompositions of the linear map ¢ showed that these maps

have unique decomposition.

1.2 Basic concepts

Here we gave some basic concepts in matrix algebra that made our study complete.
These were important concepts used to described the connection linking linear positive

maps and tensor products.

Definition 1.1. [6] Let A be a C*-algebra. A linear functional b : A — C is said to
be positive if (A) > 0 whenever A € A and A > 0.



Remark 1.2. Whenever A is selfadjoint, then /(A) € R. Moreover ¢(A*) = ¢ (A)
forall A e A

Definition 1.3. [70] Let ¢ be a linear map from A to B, then v is called a *-
homomorphism, if ¥(xy) = P(x)Y(y) for every x,y € A. 1 is a x-anti-homomorphism
is it reverses the order of operation. That is, ¥(xy) = ¥(y)Y(z)

Example 1.4. [6] Let ) : A — H be a *-homomorphism. For each x € H define
Yy A— C by ¥, (A) = (Az, z) for all A € A. In addition if A € A is positive then
A = B*B for some B € A. so

Ua(A) = ((B*B)z,z) = (B)z, (B)z) = [[(B)x] = 0

Definition 1.5. /6] A linear map 1 is from M, (C) to M,,(C) is positive if
WM, (C))T C M, (C)F. ¢ is strictly positive(positive definite) if (M, (C)) > 0.

Remark 1.6. A linear map v acting on M,, is Hermiticity-preserving if (A) € M,, is
Hermitian whenever A is Hermitian, and we denote such set of maps by B(M,,, M,,).
By ¥(A) > 0 we mean, 1(A) is positive when v*¢(A)v > 0 for all v € R". All the
eigenvalues of ¥(A) are non-negative by the spectral decomposition of (A) or all

principal submatrices of ¢(A) have non-negative determinants.

Definition 1.7. [60] A map ¢ from M, (C) to M,,(C) is k—positive if T, ® ¢ :
M @ M,, — M, ® M,,, s positive.

The Hilbert space H®" is the tensor product of n Hilbert spaces of its subsystems:
HO" = @I H,. for instance H®? = H®H. The action is performed on tensor product
of matrices and is is defined for finite dimensional matrices.

Let A € My, (F) and B € M;;,(F). The Kronecker product [42] A® B € M)k (IF)



of A is the matrix

anB  a;B arnB
A 2 B a2'1B QQ'QB agnB
amlB am2B amnB

where a;; denotes the ij-th entry of A € M,,,,(F) and B € M;(F). The Kronecker
product A ® B does not entail a restriction on either the size of A or the size of B as

in matrix multiplication.

Example 1.8. Let A be 2 x 2 matrix and I be 3 x 3 the identity matrix, then

a1y 0 0 a19 0 0
0 ai 0 0 a9 0
0 0 a1 0 0 a
(A®I) =
a21 0 0 929 0 0
0 921 0 0 929 0
0 0 921 0 0 929
On the other hand,
a1 apz| O 0 0 0
agp; ax| 0 0| 0 O
0 0 |an1 a 0 0
(] ® A) _ 11 12
0 0 21 Q929 0 0
0 0 0 0 a1y a9
0 0 0 0 21 Q929

The direct sums of a finite number of n x n—dimentional matrices transforms to a

diagonal block matrix. This has been of great importance in the discussion on the

5



structure and properties of our positive maps. In describing the positive maps that
preserve traces and their norm, the direct sum of matrices is used to determine the
eigenvalues and the determinants which is important in developing ideas on algebraic

and metric properties of positive maps.

Definition 1.9. [/2] Let A € F*™*™ and B € F™**. Then, the Kronecker sum A® B €
Friemk of A and B is
A®DB =A®I,+1,® B.

On the direct sum space, the matrices A and B acts on the vectors, so that v — Av
and w — Bw. This matrix is expressed as A @ B by lining up all matrix elements in

a block-diagonal form,

A On><m
Ad B =

Oan B

Example 1.10. Let A, and B3 be square matrices, then

ai; ap| 0 0 O

as; ax| 0 0 O

Ay @ By = 0 0 |byy b by
0 0 by bog bos

0 0 |bs1 bz2 b33

For matrices A, B,C, D and vectors v, w the direct sum satisfies the following re-




lations:

(Ae B)vew) = (Ave Bw).

(A® B)(C® D) = (AC & BD).
det(A® B) = (det A)(det B).
Tr(A®B) = Tr(A)+Tr(B).

Definition 1.11. [60] A linear map ¢ from M,,(C) to M,,(C) is k—copositive if the
map T QP : M @ M,, — My ® M,, is positive. The linear map L ® 1 s said to

be completely positive when it is k-positive for every k € N.

Remark 1.12. The linear mapping ¢ : M,, — M,, is called 2-positive if

A BN L[ e,

B C (B7) ¥(C)

where A, B,C, D € M,, are matrices with the same dimensions. We note that

Y(A),(B),y(B*) and (C) are also positive maps in their own respect.

For convenience we express k-positivity in a block matrix notation.

Example 1.13. A family of Choi maps in M,, , ¥(A4) = Tr(A)Z,: — 3A. ¥ is

k—positive and v is completely positive . Now, let n = 2, this gives,

1001 1000 1001
0000 0100 110000
v - 2 — -
0000 0010 21 000 0
1001 000 1 1001
500 3
020 0
0020
500 3



Since the determinants of all the principal submatrix are positive, 1 is 2—positive,

thus ¢ is completely positive.

Example 1.14. Define ¢y = 177(A)Z,2 — A. Then ¢ is positive but ¢(A) is not
2—positive. This is the map in Example 1.13 when the coefficients are changed. The

map

2 0 00 1 001 0O 0 0 -1
1 02 00 00 0O 0O 1 0 O
Y(A) = 5 - =
00 2 0 00 00 0O 01 O
00 0 2 1 0 01 -1 0 0 O

shows that A is positive but 1(A) is not since the determinant of the principal sub-
0 -1
matrix, = —1.
-1 0
Remark 1.15. Note that, if ¢ is completely positive it implies 1) is positive and is
hermitian-preserving. A map ¢ : M, (C) — M,,,(C) is completely positive if and
only if its Choi matrix Cy, is positive semidefinite. Similarly, the map is completely
copositive if and only if the partial transpose of its Choi matrix is positive semidefinite.
It is important to note that not every positive map is completely positive, this makes

completely positive maps very specific. We will show this in the next example but first

let us define partial transposition.

Definition 1.16. [17] Let v be a linear map from A to B, then 1 is Schwartz map,
if Y(A*A) = Y(A*)Y(A) for every A € A.
Definition 1.17. [80] Let ¢ be a linear map from A to B, then i is Jordan homo-

morphism, if Y(A") = Y(A)" for every A € A and n € N.

Definition 1.18. [/2] Given a square matriz A® B, its partial transpose with respect
to the first component is AT @ B. Similarly, its partial transpose with respect to the

second component is A ® BT,



Remark 1.19. The partial transpose map is the matrix transpose to one half of the
tensor product M, ® M,,. This transposition of the linear maps Z,, ® 7, 7 ® Z,, and
T ® 1)) acting on M,, ® M,, are such that,

(Z,®7)(A® B) = A® BT,
(T®I,)(A® B) = AT ® B,

(r@1)(A® B) = AT @ (B).

If A and B are positive semidefinite matrices in M,, and M,, respectively. Then
A® BT, AT ® B and AT @ (B) are also positive semidefinite. By (A ® B)' we denote

the partial transpose of A ® B with respect component B.

Example 1.20. Let ¢ : M3z — M3 be a positive map. Let A € M3 and define
P My — My by A — AU, Since the determinant of all the minors of A are
nonnegative, 1) is positive. That is,

Let [A;;] be the block matrix,

10 0/0 0 1
00 0|0 0 O
4] = Ay A _ 00 0|0 0O (12.1)
Az Agy 00 0[O0 0O
00 0|0 0O
10 0/0 0 1

It is clear that the determinants of every principal submatrix of A is nonnegative

therefore A is positive.



On the other hand , for the case of A",

1 0 0/0 0 O
00 0({0 0O
Ay AT 000100
U(A) = [Ay) =
AT Agy 001000
00 0[O0 0O
00 0j0 01
1 000
, o 10000 |,
The determinant of the principal submatrix is —1. So ¥(A) = [A;]"
0 001
0010

is not positive. This implies that the linear map 1 is not 2—positive. As a result
it is not a completely positive map. Therefore, not all positive maps are completely

positive.

Remark 1.21. By the Choi-Kraus 15| Theorem 2.5, for all V; € C™** the map
Y : My — M,, given by, ¥(A) = Y777 = VAV is completely positive.

Definition 1.22. [86] Let ¢ : M,, — M, be a linear map and let (E;;) with i,j =
1,...,n be a complete set of matrixz units for M,,. The Choi matriz for i is defined
by the operator;

Cp= (L)Y Ey®Ey) =Y Ey @ p(Ey) € Cm™mm,

]

Remark 1.23. The map ¢ — Cy, is linear, injective and is surjective, the Choi matrix
depends on the choice of matrix units (£;;). This map is called the Jamiolkowski
isomorphism [86]. The Choi-Jamiolkowski isomorphism is a one-to-one correspondence

between completely positive maps ¢ acting on the operators M, in a Hilbert space

10



with dimension n and positive operators Cy. The Choi matrix is represented by a
block matrix [¢)(E;;)]. The linear ¢ is completely positive if and only if the block
matrix is positive. If the block matrix is [¢)(E;;)] negative. Then 1) is not completely

positive.

Example 1.24. |54] Let ¢(A) : M3 — M3 be a positive map defined by

a1T11 + bi1xog + c1733 —T12 —T13
Y(A) = —T21 CoT11 + AaToo + baxss —To3
—31 —32 b311 + C3T22 + azxss

where ay, by, cx € R. The map ¥ (A) is completely positive if and only if ay, by, ¢ > 1,
for k =1,2,3. Computing, the Choi matrix of 1) we have that,

a, 0 0|0 -1 0/0 0 -1
0 ¢ 0[0 0 0[0 0 0
0 0 b3/0 0 00 0 0
0 0 O0[by 0 0[O0 0 0
Co=| -10 0[0 a 0|0 0 -1
00 0[0 0 ¢|0 0 0
0 0 0[0 0 Oflcg 0 0
0 0 0[0 0 00 by 0
~1 0 0[0 =1 0|0 0 ay

Since ag, by, ¢, are nonnegative. Then all principal submatrices of Cy, are nonnegative,

Cy is positive definite. Hence 1(A) is completely positive.

Definition 1.25. ([12]) A positive linear map ¢ : M, — M,,, is decomposable if
it can be expressed as a sum of a completely positive map 1 - M,, — M,, and a
completely copositive map ¥y : M,, — M,,. Otherwise 1 is said to be indecomposable.

A linear map 1 s k-decomposable if there are maps 11,12, such that 1 is k-positive,

11



Uy is k-copositive. 1 is said to be atomic if it is not (2,2)-decomposable.

Remark 1.26. If ¢ : M, (C) = M,,(C) there exists n x m matrices V; and @; such
that

Cy = D Vib(AV;+ 3 Qu(B)Q;

where Vi, Va, ..., Q1,Q2,... € M, (C) and A, B € M,, with BT a transpose in M,,.
Cy, = 22 Vio(A)V; and Cy, = 7. Q59(B")Q; as k—positive, k—copositive respec-

tively.

1.3 Statement of the problem

Despite of the fact that positive maps are essential ingredient in the description of
quantum systems, characterization of the structure of the set of all positive maps has
been a long standing challenge. Stinespring (|84], Theorem 1)introduced the concept
of completely positive maps with the representation theorem from which many theories
of completely positive maps have been advanced in last sixty years but still remains
an open area for mathematical physicists and operator algebraists due to its appli-
cation in quantum information. The main reason behind this is the complex nature
of completely positive maps on matrix algebra is not quite clearly understood. Sev-
eral authors have given immense attention in studying decomposition of positive maps
with more emphasis given to the study of indecomposable maps by many authors since
Choi [16] introduced the study of these maps by giving examples of indecomposable
maps satisfying some special properties. To date there is a call in the construction
of positive maps that are indecomposable due to their applications in mathematical
physics. In quantum information, there is high interest in positive maps from M;3(C)

to My4(C) with emphasis in indecomposable maps. Yang et al[106] posed the question,

12



"Does there exist a 2-positive but indecomposable map in B(M3(C), M4(C))"? This

is the interesting question which formed the basis of this study.

1.4 Objectives of the study

The main objective for this study is to describe decomposability of positive maps on

positive semidefinite matrices. The specific objectives of this study are to:

(i). Construct linear positive maps ¥, ,....c,_,) from M,, to M., on positive semidef-

inite matrices.

(ii). Establish the conditions for the positivity of linear maps ¥, c,, .. c,_,) from M,
to Mn+1.

(iii). Characterize the structure of the Choi matrices for 2—positive and complete

(co)positive maps from M, to M, on positive semidefinite matrices.

(iv). Establish the conditions for the decomposability of linear positive maps ©(uc,....c, 1)

on positive semidefinite matrices for n = 2, 3, 4.

1.5 Significance of the study

Positive maps perform a vital part both in mathematics and mathematical physics.
The Peres-Horodecki theorem [40], [75] gave a criterion for detecting an entanglement
of quantum states. If the partial transpose of a mixed state has negative eigenvalues,
then the state is entangled. However, this is not generalized for entanglement of states
as some have positive eigenvalues. Note that it is possible in n x m(n,m > 3) [40]

dimension for the quantum state to be entangled even if the eigenvalues of the partial
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transpose are all positive. Historically the link between separability and positive maps

with Peres-Horodecki theorem was first expressed in [15], [73] and [105].

A quantum state is a vector that encodes a state and convey the information in a
system just as the vectors & = (xy,...,x,) € C that was looked at in this study. A
state p (density matrix) is separable if and only if (14,®1))(p) is positive for any positive
map ¢ which sends positive operators on A into positive operators on . A positive
map ¢ is decomposable. Otherwise, v is indecomposable. Decomposable maps can not
detect Positive Partial Transpose entangled density operators. Indecomposable maps
should detect at least one Positive Partial Transpose entangled density operator. The
quantum channel(completely positive map) is positive partial transpose provided it’s

Choi matrix is positive partial transpose.

The study has a significant addition of mathematical knowledge and applications rel-
evant to problems encountered in mathematical science and their related subjects,
more specific in quantum information theories. The linear maps ¥, ,....c,_,) are com-
pletely positive maps. We believe the mathematical structure of these positive maps
Y(uer,..cny) are useful in showing entanglement breaking using suitable indecompos-
able maps. The Choi matrices generated by the linear map W, ., ,) with block-matrix
element transposition as unique addition will elicit new concepts in the study of com-

pletely positive matrix operators.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, we highlighted related literature which are important in our study.
A great number of studies have been carried on Positive maps on Hilbert spaces in

general and on decomposition of positive maps in specific.

2.2 Positive and Completely positive maps

Positivity of matrices is a very useful and interesting property of positive maps. How-
ever, their characterization have been elusive and for various reasons especially pos-
itivity of the special class of completely positive linear maps. The concepts of posi-
tive linear map on C*-algebras can be traced to middle 1950s with generalization of
Kadison’s [45], [44] Schwartz inequality ¢(A)? < ¢ (A?) for a unital positive map 1,
where A is a Hermitian matrix with characterizations of isometries of C*- algebras.
Choi [17] investigated 2-positive linear maps with special attention to completely pos-
itive linear maps an stated that, if ¢ is a 2-positive map, then )(A*A) > (A*)Y(A)
for all A € A (Corollary 2.8) implying every unital 2-positive map is a Schwartz map,

however the converse is false . Choi [17] concluded that every 2-positive linear map is
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locally completely positive. That is, if ¢ is 2-positive from A to B, then for any = € B
the underlying space of B, there is a completely positive linear map ¢ : A — B with

]| = 1, such that ¢(A)z = 1, (A)z for A € A.

Woronowicz [105] defined a strong Kadison inequality with the assertion that ¢(c) >
¥ (b)*1(b), whenever b, ¢ € A then b and b* commute in the inequality ¢ > bb* for every
normalized positive map. Kirchberg [48] later showed that this was false. Tang gave
a counterexample (in [97] Example 4) using a unital positive linear map showed that

Woronowicz conjecture was not valid for a map from My to M, .

Russo [81] noted that for a unital C*-algebra A is mapped by ¢ a unital self-adjoint
linear map into B, 1(A) is invertible for every invertible A. Positive maps are self-
adjoint maps with nonnegative spectrum because v is positive and consequently 1 is
a Jordan homomorphism [80] where A a von Neumann algebra. However, Choi et al
[11] gave a counterexample involving Toeplitz operators and showed that if the unital
positive maps are invertibility preserving they are *~homomorphisms. The map is a

Jordan homomorphism on condition that the range of ¢ is a C*-algebra.

Stinespring [84] introduced the concept of completely positive maps with the repre-
sentation theorem from which many theories of completely positive maps has been
advanced in last sixty years but still remains an open area for mathematical physicists

and operator algebraists due to its application in quantum information.

Theorem 2.1. ([84], Stinespring Theorem.)
Let A be a C*-algebra with a unit, let H be a Hilbert space, and let ¢ be a linear
function from A to operators on H. Then a necessary and sufficient condition that 1)

have the form

Y(a) = Vir(a)V

for all a € A, where V' is a bounded linear transformation from H to a Hilbert space K

and 1 is a *-representation of A into operators on IC, is that ¢ be completely positive.
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On the other hand Arveson [2] stated the theorem that follows;

Theorem 2.2. (/2], Averson Theorem.)

Let (A, B) be a completely positive map and ¢ in [0, | a completely positive map such
that v > ¢. The map v — 1y s an affine order isomorphism of the partially ordered
convex set of operators {¢ € w(a) : 0 < ¢ < Iy} onto [0, @] where P(a) = Vir(a)V
and Yy(a) = V*r(a)pV for all a € A.

Stinespring (|84] characterized completely positive maps from A as a *-homomorphisms
into B. That is A linear map v from A to B is k-positive for every positive map 9 ® Z;,
from A ® M} to B ® M, is positive. 1 is completely if and only if it is k-positive
for all £k =1,2,3,.... The Stinespring Theorem commonly known as the Stinespring

Dilation Theorem is generally stated as

Theorem 2.3. ([106], Stinespring’s dilation theorem. Theorem 1.1.2)
Let A be a unital C*-algebra and ¢ : A — B(H).

(i). ¥ is completely positive if and only if there exist a Hilbert space K, a bounded
linear operator V : H — K and a x—homomorphism ¢ : A — B(K) such

that (a) = V*m(a)V for all a € A. Furthermore, ||V||* = || (1)]].

(i1). ¥ is completely copositive if and only if there exist a Hilbert space KC, a bounded
linear operator V : H — K and an x—anti-homomorphism ¢ : A — B(K) such

that ¥(a) = V*r(a)V for all a € A.

In addition, Averson [2]| showed that for a S a norm-closed self-adjoint subspace of
A containing the identity Z4 in A, where A is a unital C*-algebra, each completely
positive map from subspace S to a C*-algebra B can be extended to a completely
positive map from A to B. The concept of complete positivity and positivity of linear
maps correspond when the C*-algebra is commutative. For every commutative C*-

algebra A and 1 is a positive operator-valued linear function on A, is completely
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positive map [84]. Stomer [91] also deduced that if either A or B is Abelian, then

every positive map ¢ from A to B is completely positive (or completely copositive).

Choi [15] observed that for a linear map ¢ to attain complete positivity it has to be
n-positive. It was enough to prove complete positivity by showing positivity of Z,, ®

on a single element.

Theorem 2.4. ([42], Choi Theorem)
Let ¢ : M, (C) — M,,(C) be a linear map. Then following are equivalent;

(i). ¥ is n—positive.
(i1). the Choi matriz Cy is positive.

(1i). ) is completely positive.

Choi [15] realized that a map 1 is completely positive provided it is k-positive where

k = min{n,m}. From this Choi characterized that;

P1( My, M) D Po( My, M) D ... D P My, M,y,) = CP(M,,, Myy,)

where P, and CP denote a k-positive map and completely positive map respectively.
Choi [15] used this idea to describe the difference between k-positivity and (k + 1)-
positivity using the map ¥, A = alTr(A) — A which is k-positive but was not (k+ 1)-
positive. Choi went further and noted that for a unital completely positive maps
originating from a convex sets containing extreme points, where the extreme points
are those 1 for the linearly independent set {V;V;* : 1 < i < nk}. The map ¢ is
congruence on condition that ¢ is given by ¥(A) = V*AV for all A € M,,, with V
being an n x k matrix. Though it was conjectured that extreme rays of positive maps
from M,, to M,, are all congruence maps, choi [15] established by a counterexample

in biquadratic forms to disapprove this conjecture.
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The Choi-Kraus theorem [42], [16] commonly known as the Choi’s Theorem has been
a pilar in the classification of completely positive linear maps. Choi [18] described a
clear difference between positive and completely positive linear maps on C*-algebras
operators. Using an example Choi [18] constructed (n — 1)-positive maps. The linear
positive (n — 1)Z,2 — (E;j)i<ij<n Was shown to be (n — 1)-positive but failed to be
n-positive. Using The Stinespring’s Dilation Theorem [106] , Kraus [53]| showed that,
for every completely positive that is trace preserving bounded linear map v from M,
to M., there is a unital normal and completely positive bounded linear map 1) from
M,, to M,, satisfying the relation Tr(¢(AB)) = Tr(Ay(B)) for all A, B € M,, where
M,, are trace preserving maps with v as the dual map of 1. Choi conquered with

Kraus and stated for completely positive linear maps by the theorem below.

Theorem 2.5. (/6/, Choi-Kraus Theorem) Let b : M,, — M,, be a completely

positive linear map. Then there exist V; € C™*™ 1 < 5 < nm, such that

Y(A) = f: Vi AV;.
j=1

The Kraus representation ¢(A) = 22:1 V;* AV} of 1 is not unique since the expression
[Y(E;r)] = > Vi*E;V; is not unique, so {V;} is not uniquely determined. This addi-
tional condition on {V;}._, ensures that ¢)(A4) = 23:1 V;*AVj is a canonical expression
for ¢. Hoyer [42|, classified density matrices as trace preserving positive maps and

realized that; For all V; € C"™™, the map M,, to M, define by ¢(A) = > 7" VAV

is trace-preserving if Z?:1 ViV = I, where I, is the identity matrix on M,, and ¢ is

trace preserving.

Skowronek and Stgrmer [82] examined the norms of positive maps between two bounded
Hilbert spaces K and H by constructing a linear map 7TrA — A on B(K) for a com-
pletely positive map v of K into H and A > 0. Stgrmer in [87] showed that each of

these positive map is a positive scalar multiple of the map when \ = 1 for all positive
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maps. Further, Stgrmer used these maps was to show that some maps are k-positive
but are not (k+1)-positive. On the other hand, Tomiyama [100] gave the an answer to
question raised by Choi in [15] by describing positive maps for which n-positivity cor-
respond with (k + 1)-positivity. Tomiyama [100] showed that, for each n-positive map
form A to B is k + 1-positive provided either A or B has irreducible representations
whose dimensions less than n and every n-positive map is automatically completely
positive. Takasaki and Tomiyama [94] investigated geometric relations by examining
three distinct positive maps in the M,, matrix algebra with a look at their the transpose

map and the completely positive map and concluded that;

Theorem 2.6. (/94]) For a nonnegative number o with 0 < o <y, the map ap + (1 —

a)7(n) is (n — 1)-positive but not n-positive when 3 < a < 1, completely positive when

S =

<a< % and it is positive when 0 < a < %

For all rank one orthogonal projections W € My(M,,), where (Z, ® ¢)(W) > 0 .
Equivalently, for all orthonormal vetors ¥ = (x;,...,xx) € C", the operator matrix

[Y(xix))|1<ij<k > 0 imply that ¢ is k-positive [41|. That is,

Theorem 2.7. ([41]) Let suppose ¢ : M, (C) — M,,(C) is a linear map continuous

under strong operator topology. The following are equivalent.

(i). ¥ is k-positive, i.e., I ® 1 is positive.
(it). (Zy @ )(W) > 0 for all rank one othogonal projections W € My(M.,,).
(iii). For all orthonormal subset x = (x1,...,xx) € C", the operator matriz defined by

V(X)) = [Y(xix))|1<ij<k s positive semi-definite.

The structure of completely positive maps can be understood through the Kraus
representation. Moreover Choi’s theorem provides a technique to clearly visualize their

structures well but as one gets deeper into the study of positive maps, the situation
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becomes much less clear due to the lack of a complete structural representation of

these maps.

2.3 Decomposable and Indecomposable Positive maps

Choi [12] introduced the concept of decomposable positive maps with the quest to an-
swer the question by Hilbert, 1888 that asked ' Which positive semidefinite polynomial
can be written as a sum of two squares?’ That is, if all positive semidefinite homo-
geneous polynomials can be stated as a sum of squares of homogeneous polynomials.
Choi [16] realized that there existed a positive semidefinite biquadratic form which
could not be decomposed as the sum of squares of bilinear forms (i.e completely posi-
tive and completely copositive maps) by giving concrete counterexample for the case
of map from M3 to Ms. In [12] and [15] Choi defined structures of completely posi-
tive linear maps between complex matrix algebras for decomposition of positive maps.
One of the basic problems about the structure of the set positive maps is whether they
could be decomposed as an algebraic sum of some simpler classes of positive maps.
Two sets of positive maps were then considered; the class of completely positive maps
and the class of completely copositive maps. That is, a positive linear map v from
M, (C to M,,(C) is decomposable if expressed as the sum of completely positive map
1y and completely copositive map 1), where 1, is k—positive and 1), k—copositive for

all k& € N, respectively [50].

The first example of an indecomposable positive linear map was constructed by Choi

[16]. In particular, the map v from M3 toM3 defined by

T11 + Ta2 —T12 —T33
Ly — —T21 T2+ T3z —Ta3 (2.3.1)
—31 —T32 T33 + T11
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as a positive map that does not admit an expression 1(x) = > V*XV; where V; is a

3 X 3 matrix.

Results by Stgrmer [86] and Woronowicz [105] found that, if nm < 6, all positive
maps ¢ from M, to M,, are decomposable but this is not true in higher dimensions.
The decomposition of every linear positive map is not possible [16]. In [13], a counter
example is given to justify this theorem. Woronowicz [105] also gives counter example
through computations to show that some positive maps are indecomposable. However,
they concluded that the decomposition of positive maps from M, (C) to M,,(C) is
possible when mn < 6. For 4 a faithful 2-positive unital projection on a C*-algebra A,
such that the self-adjoint part of the range of ¢ is a Jordan C*-algebra of A. Robertson
[79] constructed the first explicit example of an indecomposable positive linear map
from My into M,, and (in Theorem 2.4,) showed that if ¢ is the sum of 2-positive and

2-copositive maps then ¢ is decomposable.

Stgrmer [92], [88] showed that a map ¢ from A to B(H) is decomposable if there are a
Hilbert space K, a Jordan morphism 7 from A to B(K), and a bounded linear operator
W from H to IC, such that ¢(A) = W*n(A)W for every A € A. Stgrmer characterizes

decomposable maps in the spirit of Stinespring dilation theorem by,

Theorem 2.8. (/92], Theorem 1). Let ¢ : A — B(H) be a linear map. Then 1 is
decomposable if and only if for all k € N whenever (a;;) and (a;;) belong to My (A)*
then [ip(ai;)] € Mi(B(H))".

For a linear map U4 p where A, B € M,,, on M,,, Li and Woerdeman [59] defined
a decomposable positive map Wyp = o X + Ao X + Bo X” where X satisfy the
condition ¥(X;;) = X;; and showed that every positive map of the form the map V4
are hermitian matrices with zero diagonals on M,,. It was concluded that these maps
are decomposable if and only if n < 3 and used an example to show that for the case

of n > 4 that map W4 g is indecomposable.
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Stermer [88] showed that a positive unital idempotent map, of a finite dimensional
C*-algebra into itself is indecomposable if and only if it is atomic. That is, it is not
the sum of a 2-positive and a 2-copositive map. Following the idea of Choi et al [97]
obtain a decomposition theorem for k-positive linear maps from M, (C) to M,,(C) ,
where 2 < k < min{n, m} and gave an affirmative answer to Kye conjecture [54] that

every 2-positive linear map from Mj3(C) to M3(C) is decomposable.

Theorem 2.9. ([106], Theorem 1.1) Every 2-positive (respectively 2-copositive) linear
map in B(M3(C), M3(C)) is decomposable.

Tanahashi and Tomiyama [96] constructed a series of linear maps as the extension of
Choi’s map and introduced the concept of atomic map with a stronger indecompos-
ability and showed that Choi’s map is atomic. Ha [27] obtain more examples of atomic
maps by representation for positive projections onto spin factors. The projections are
uniquely determined by the dimension of the spin factors. Osaka [71] and [73| gives
an example of atomic map in M,, where n > 4. All generalized indecomposable Choi

maps [30], [96] are known to be atomic.

Indecomposable maps have been considered as a huge obstacle in getting a canonical
form for a positive map. Consider a map defined on M3, depending on three non-

negative parameters a, b, c,

azyy + brss + cxao —T12 —213
¢(a7b,c)(X) = —T9 cr11 + arss + brao —To3
—T3] —T32 bZEH + CIT33 + aroo

where X € Msj. The map (20,2 (X) was the first example of a indecomposable
map [16]. Choilam [14] noted that the map was indecomposable and extremal in
the cone of positive maps by an argument involving the associated biquadratic form,

F(z,y) = ¢{((z*z)z, z) for all z,z € C".
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Chrusé¢inski [19] provided a characterization of important classes of positive maps in
finite dimensional matrix algebras due to the Choi-Jamiolkowski [87] isomorphism and
their corresponding classes of indecomposable maps and showed that a positive partial
transpose map is entangled if and only if there exists an indecomposable map. Using
the Choi-like maps in Mj3(C), Chruscinski [21] gave a generalizations in M,,(C) and
the Robertson map [79] in My4(C) together with its generalizations in My, (C)) and
proceeded to discuss several properties entanglement theory related to these maps.
Chrus¢inskil and Sarbicki [21] analyzed linear positive maps from B(K) to B(H) then
provided a sufficient condition where this map is exposed by the strong spanning
property that makes it sufficient for them to be optimal. In addition they showed that
this condition was necessary if the linear maps is decomposable when their dimension
is 2. The study was extended in [20] where a class of positive linear maps from B(C?*")
to B(C?") was constructed and shown that are exposed and that the maps reproduce
the well known Robertson maps which are extremal and are also exposed giving a class
of exposed indecomposable positive maps in the algebra of 2n x 2n complex matrices

with n > 2.

Robertson [79] and Stgmer [92] constructed extreme maps for n = 2, 3,4 with adjust-
ment on diagonal element when n = 3 and negating the off diagonal elements. The
structures of positive cones of these maps were noted to be complicated for positive
linear maps in the complex field. Kye [56] studied these extreme maps with the con-
text of Hadamard products in the three-dimensional case and found that every positive
linear map of this type is decomposable. Further Kye gave a characterization for the
positivity of these maps when real coefficients for positive linear maps between matrix
algebras with fix diagonal elements. Kim and Kye [47] showed that a positive linear
map on M, that leaves invariant the diagonal entries is decomposable if n = 3, how-
ever this fails in when n = 4. Li Chi-Kwong and Woerdeman [59] showed that every
completely positive map that leaves the diagonal entries invariant of all diagonal en-

tries equal to the map ¥4 from M, to M,, of the form from X to Ao X is completely

24



positive. Osaka [72] gave a large class of extremal positive maps in M3(C) that are
neither 2-positive nor 2-copositive and further described the algebraic structure of the
set of all positive linear maps in Mj3(C) where it is shown that the maps constructed

in [56] are decomposable using atomic concept.

Breuer [9] and Hall [33] independently generalized the Breuer-Hall maps [9]

1
YU = 5 2((TTX)] — X -UXTU")
n—

on M, as reduction map. Letting U to be an antisymmetric unitary on C?". Breuer

and Hall showed that this map 7 is positive and indecomposable.

Robertson [79] used this concept to create an example of an indecomposable positive

map on My. The Robertson, map 1 from My to My is given by

T33 + Ty 0 T13 + Tao T14 — T3
0 T3z + Tyq To3 — Ta1 Toa + T3n
(i) =

T31 + Tog T3z — T4 T11 + Toa 0

Ta1 — T3 Tag + T13 0 11 + T

Cho, Kye, and Lee [10] generalized the idea of Choi maps by constructing a class of
parametric linear maps on M3(C) and looked at positivity, completely positivity and
decomposability in relation with positive semidefinite biquadratic form where they
defined the map (45 from M3(C) to M3(C) given by ¥(ap.)(X) is given by the

matrix:

(51’11 + bl’QQ + cx33 —X12 —T13
—T91 (51’22 + bl’35 + cxq —T923
—T31 —T39 51’33 + b[lfll + CZ992

where X € M3, 0 = (a — 1) and a, b, ¢ are nonnegative real numbers and concluded
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in [10] that the linear map t(qp,) is positive if and only if; a > 1, a + b+ ¢ = 1,
be > (2 —a)?,1 < a < 2, completely positive if and only if a > 3, decomposable if and
only if a > 1, bc > (3_7“)2 ,a € [1,3] and 2-positive if and only if a > 3, or 2 < a < 3
and bc = (3 — a)(b+ ¢) > 0 and completely copositive if and only if it is 2-copositive

if and only if @ > 1, be > 1.

The map of the form 1)(qp,,) and its variants was investigated by Ha [31] and Osaka
[72] in various contexts was fond to be separable if and only if it is partially positive
transpose, while [92] considered Y(1p,1 7 Which turned out to be indecomposable. For
nonnegative real numbers a,b,c and —7 < 6 < 7, they consider the map (g )

between M3 defined by

ax11 + bras + cx33 —e11y —e2,4
_ 0 b _ 0
€7 X1 CT11 + axroo -+ L33 €7 X923
_ 10 _ 0 b
e’ rs3 €’ x39 11 + CTog + axss

A family of indecomposable maps for an arbitrary finite dimension n = 3 was con-
structed by Kossakowski [50]. Several methods of construction of indecomposable
maps have been proposed by Kim and Kye [47] , Osaka [73], [72], [71] and Tang [97]

most of which are in the context of quantum entanglement.

Majewski and Marciniak [67] used the extremal unital positive map from My to My ;

T11 arxis + Lroy

aroy + Pr1a Yx1 + EXT12 + ETo + 99

as defined by Stermer |92] from My to My to construct concrete decomposable maps
and showed that in most cases the decomposition is unique. Majewski and Marciniak
[68] considered analysis of the maps from Ms to M3 based on Choi matrix method in
which they gave a generalized Choi matrix for the positive maps from My to M,

where n > 1 giving conditions under which they are decomposable. The general
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problem of describing all positive maps and their decomposition remains open.

Augusiak and Stasi ‘nska [3] discuss some general connections between the notions of
positive map, weak majorization and entropic inequalities in the context of detection
of entanglement among bipartite quantum systems based on the fact that any positive
map ¢ from M,,(C) to M,,(C) can be written as the difference between two completely

positive maps.

The literature here in gave valuable insight that guided this study. The fundamen-
tal results obtained emanate from the question asked by Yang et al [106] in their paper

titled "All 2-positive linear maps from M3(C) to M3(C) are decomposable".
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Chapter 3

RESEARCH METHODOLOGY

3.1 Introduction

In this chapter, some concepts in matrix algebra have been presented to make this
study self-sufficient. More specifically, important concepts to explain the connections

linking tensor products and linear positive maps.

3.2 Positive semidefinite matrices

A matrix A is said to be orthogonal if AAT = I or, ATA = I with the rows (or the
columns) of A forming orthonormal basis of R”. A matrix A is said to be symmetric
if A = AT. The spectral decomposition theorem being an important theorem about
real symmetric matrices it decomposes a square positive matrix to a diagonal matrix

with all non-negative diagonal entries(eigenvalues).

Theorem 3.1. (/57], Theorem 1.7.1) (Spectral decomposition theorem) Any real

symmetric matriz A € M,, can be decomposed as A = ZLI A\vvf, where \;’s are the
eigenvalues of A and the vectors v; € R™ are the corresponding eigenvectors which

form an orthonormal basis of R™.
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The matrix A = VDV, where )\;’s are the diagonal entries on the diagonal matrix
D and the matrix V' is orthogonal. Similarly, by the singular value decomposition of
A is decomposed to A = UDU*, where U is a unitary and diagonal matrix D whose

diagonal entries \;’s are the nonnegative eigenvalues of A.

Theorem 3.2. (/35], Theorem 1.36) Let A € B(H) be an operator. The following

conditions are equivalent.
(1). A is positive semidefinite, which is defined by the property: z*Az > 0 for all
z € R"™.
(1) A= A" and 0(A) =[0,00) .
(11i)) A = B*B for some operator B € B(H).
A symmetric matrix A is also positive semidefinite if the real number 2*Az is non-

negative for all z € R™. If, furthermore, 2* Az > 0 then A is a positive definite matrix.

In the case the symmetric matrix A is a block matrix, we have;

Theorem 3.3. (/46], Theorem 3.8) Given a symmetric matriz

A CT
C B

with B not necessarily invertible, the matriz A is positive semidefinite on conditions

that following hold:

(1). B is positive semidefinite,
(i1). the Schur complement A/B=A—CB*C >0, and

(ii). (I — BB*)C* = 0.
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The spectrum of A (0(A) € C), is the multiset of all eigenvalues of A counted with

multiplicities. The positivity of A implies it is Hermitian.
Theorem 3.4. Let A be a n X n hermitian matriz. Then, the following statements
are equivalent:

(1). A is positive semidefinite.

(11). Every principal submatriz of A is positive semidefinite.

(111). Every principal subdeterminant of A is nonnegative.
Let A € C"" be a Hermitian positive definite matrix. Then there exists a unique
upper triangular L. € C™*" where the diagonal elements of L are real and positive
such that A = L*L. That is, A has an LDL"-factorization if and only if A = AT
and principal submatrices Ay of A are all nonsingular for £k =1,....n — 1. When A is

positive definite and L has all diagonal entries positive, the Cholesky decomposition

A = LL" is unique.

Theorem 3.5. (/36], Theorem 10.9) Let A € C"*™ be positive semidefinite of rank k.

(1). There exists an upper triangular L with nonnegative diagonal entries such that

A=L"L.

(ii). There is a permutation matriz P such that PTAP has a unique Cholesky fac-

torization of the form

Lyy Lo
0 O

PTAP = L*L, where L =

Theorem 3.6. (/35], Theorem 2.3) Let S be an invertible matriz. The self-adjoint
S P

P Q

block matrizc M =
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(i). is positive if and only if S is positive and P*S™'P < Q.

(ii). det M = (det S) det(Q — P*S~1P).

Remark 3.7. For M = . In case s € Rt and not matrix. Then from

L -7

P
Theorem 3.6,

det M = (det S) det(Q — P*S™'P) = sdet(Q — p*s'p) > 0

if and only if sQ) —ﬁ*ﬁz 0.

Altering the arrangement of the elements of the matrix in Theorem. 3.6 we have the

following,

Theorem 3.8. (/5/, Lemma 8.2.6). Let A € F"*" ¢ € F", and b € R, and define

A c
b

A:

Then, the following statements are equivalent:

(i). If A is positive semidefinite. Then either b =0 and b =0, orb > 0 and cc* < bA.

Furthermore, the following statements are equivalent:
(i). A is positive definite, and c*A7'c < a.
(iii) b > 0 and zx* < bA. In this case, det A = det A.det(b — c* A 'c).

Theorem 3.9. ([46], The Cauchy-Binet formula. Theorem 4.5) Let A and B be

matrices of size n X m and m X n, respectively, and n < m. Then

det AB = > Apy.p, B

1<k <ko<...<kn<m
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where Ay, ..k, s the minor obtained from the columns of A whose numbers are ky, ...,k

and BF-*n is the minor obtained from the rows of B whose numbers are ki, ..., ky.

Remark 3.10. If A, B € M,,y,, then it is clear that det(AB) = det(A) det(B). For a
case where A is n X k matrix and B a k X m matrix, then the resulting matrix product
AB is a square matrix of dimension km. It is noted that the Cauchy-Binet formula

applies in the generalized Cauchy-Binet case in [38] Theorem 6 .

3.3 Tensor products

3.3.1 Eigenvalues of tensor product

The tensor product A ® B is positive semidefinite if and only if A and B are both
positive semidefinite or both are negative semidefinite. This follows from the fact that
given the eigenvalues Ai, Ao, ..., A; for A and py, po, ..., pt; for B; the eigenvalues of A® B
are \;u; for all 7, j. By the spectral theorem, if x; and y; are the orthonormal sets of
the eigenvectors for A and B respectively with their corresponding eigenvalues \; and

wi, for 1 <i<nand1l<j<m,then
(A®B)(z:i ®y;) = Aipj(zi @yj),
where x; ® y; are the eigenvectors and \;u; are the eigenvalues of A ® B. Similarly, if

A e M, and B € M,, are Hermitian (positive), then A ® B is also Hermitian.

On the tensor product space, the matrix acts on the vectors, so that v — Av, but

w — w. This matrix is written as A ® I, where [ is the identity matrix.

Let \;’s and p;’s be the eigenvalues of A and B respectively. By the spectral theorem,

if z; and y; are the orthonormal sets of the eigenvectors for A and B respectively with
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their corresponding eigenvalues \; and p;, for 1 <¢ <mn and 1 < j <m, then

(A@ B)(zi®y;) = (A® ) (z®@y)+ (I, ® B)(r®y)
= (Az@y)+ (2@ By)= M ®y)+ (r @ uy)

= MRy +purzy) =N+ (ry)

where x; ® y; are the eigenvectors and \; + p; are the eigenvalues of A® B .

Like the tensor product, the direct sum A @ B is positive semidefinite if and only
if A and B are both positive semidefinite or both are negative semidefinite. Similarly,

if Ae M,, and B € M,, are Hermitian, then A ® B is also Hermitian.

3.3.2 Partial transposition of tensor product

The partial transpose map apples the usual matrix transpose to one half of the space
M, ® M,,. The partial transpose is the linear maps Z,, ® 7, 7 ® Z,, and 7,, ® ¢ acting
on M, ® M,, such that,

(Z,®7)(A®B) = A® BT,
(T®IL)(A®B) = AT ® B,

(@ ¥)(A® B) = A" @¢(B).

If A and B are positive semidefinite matrices in M,, and M,, respectively. Then by
tensor product properties AQ BT, AT @ B and AT ®1(B) are also positive semidefinite.
We have that (A ® B)' denotes the partial transpose of (4 ® B) with respect to the

first component A.
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3.3.3 Block matrix canonical shuffling

Let us consider M,,,(M,,) for a C*-algebra A = (A;;)"—, where A;; is in M,,. Thus
A = (ai,j,k,l)glzl with a; ;51 € M,. Setting By, = (a,-7j7k7l)§’fj:1 as an element of
M, (M,,) and thus B = (By)p,—; in M,(M,,). Now M,,(M,,) and M,(M,,) are
both isomorphic to M,,, by deleting the extra parentheses. With this identifiers M,,
and M, are unitarily equivalent elements of M,,,. This is observed if we regard A
as an element of M,,,, say A = (Cy)77%,, then Cy = a;, where s = n(i — 1) + k
and ¢ = n(j — 1) + 1 while if we regard B as an element of M, say B = (ds)77%,
then dy = a;j, where s = m(k — 1) +7 and t = m(j — 1) +j. Now, let {E;}]_,
and {Fkl}z,lﬂ denote the standard matrix units for M,, and M,, respectively. The
element A of M,,(M,) ~ M, ® M,, is just

A= (ai,j,k,l)ijl = (Aij)zl:p (3.3.1)
where A;; € M,, and (A4;;) € M,,. On the other hand ,
B = (aijri)i5=1 = (Brt)ki=1, (3.3.2)

where By, € M,, and (B;;) € M,(M,,). Since the above operation is for passing
from M,,(M,) to M,, ® M, is just a permutation, it is a *-isomorphism. This
operation passing from M,,(M,,) through to M,, ® M,, is just a permutation, it is a
x-isomorphism. This %-isomorphism is simply canonical shuffle. It is important to note

that since the canonical shuffle is a *-isomorphism, it preserves norm and positivity.

Naturally a block matrix M, (M) identify with matrix M, 1) if the correspond-
ing entries are the same. Similarly the multiplication and *-operation on M,,(M,11)
become the usual multiplication and *-operation on M, ,41). The identification de-
fines a x-isomorphism. Hence, the unique norm on M, ® M, is the norm obtained

by this identification with M,,,41). An element of M,,(M,, 1) will be positive if and
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only if the corresponding matrix in M, ,41) is positive.

3.3.4 Tensor product maps

The tensor product space C" ® C* is identical with the space of block matrices
{El-j}"’k € M, making a basis of M, ; with a tensor representation of the canon-
ical bases {e;}", {e;}* of C" and CF respectively such that Ezk = el ®ei =
1,...,n,j=1,...,k The matrix [A4;;]™™ identifies with the elements of a block matrix
M, @ M. Let ¢ : M,, — M, and ¢ : M,, — M. The tensor product map
VY My @ My, — My @ M, is given by (¢ @ 1)(A® X) = h(A) @ (X).

Let Z,, : M, — M, be an identity map Z,(A) = A for any A € M,. The map
L, @Y : M, @ M, — M, ® M is given by (Z, @ ¢)(A® X) = A® Y (X). The set of
matrices A® X € M,,(M,) by extension 42| is uniquely defined by linearity with the
standard bases e; and e; for C" | the set e;e; = Ejj representing a basis for M,, with
(Z,, @ V) (Ey; @ Xi5) = Eij @ (X;;). Every matrix [A;;] € My(C) @ M,,(C) is written
as [A;j] = > . A® X, where A € My(C),z € M, (C). The map 7, ® ¢ is defined
linearly through (Z; ® ¥)(A® X) = A® ¥ (X).

3.4 Mathematica

The use of Mathematica software has been employed in the analysis of matrix determi-
nant and eigenvalues in the study. Matrix computations are an essential part of linear
algebra. Mathematica provides a wide range of functions for carrying out matrix com-
putations. these include; eigensystem, solving linear systems, matrix decompositions,
determinants of matrices among others. Mathematica does not distinguish between
row and column vectors. It is frequently useful to refer to the components of a vector,

the entries of a matrix, or the rows of a matrix. Mathematica has an indexing operator.
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Parentheses are reserved for algebraic grouping, square brackets for function evalua-
tion, and curly brackets for lists and double square brackets are used for the indexing
operator. Problem of computing the eigenvalues of a square matrix is equivalent to
the problem of finding the roots of an n — th degree polynomial. Mathematica is not
used only to find the roots of the characteristic polynomial; the output is simply the
generated desired eigenvalues are the roots of the n-degree polynomial. Mathematica
was used to estimate the numerical roots and performs a numerical computation in-
stead of a symbolic computation whenever the input matrix has floating point entries

instead of symbolic entries.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Introduction
In this chapter, we constructed a linear positive map (., ,...,_,) and gave the values

for the parameters cy,...,c,—1 and pu for n = 2,3,4. for which the maps are positive,

2-positive and completely positive and decomposable.

4.2 Construction of the positive map ¥, ., .

A
Let ¥ = : be a column vector in C" and Z* = ( T ... Inp ) denotes the
Tn
conjugate transpose of the vector Z. We define the norm of 7 by ||z|| = (22+...+a2)2
It is clear that;
T
Fi=(z ... 7)) = ottt =l
Ln
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while,

1 171 12y

e C (4.2.1)

T xnfl an_;n

By the definition of positive semidefiniteness the matrix, x;Z; is positive. We de-
note this matrix by X. Since X is positive semidefinite, then all it’s principal mi-
nors(eigenvalues) are nonnegative. The diagonal elements of the matrix X are such

that x;Z; = |z;| are positive real numbers. In this study we will denote the diagonal

entries x;7; € R by «,,.

Let p,cq, ..

., Cn—1 € R such that cq, ..

family of positive maps ¥ uc,,.. c,_,)(X) where X € M, (C) as follows:

Py
—C1X221

—C2X3%1

—Cp—2Tn—171
0

—UTnT1

w(,u,cl,...,cn,l) . Mn<(c) — Mn+1 ((C)

—C1X1%2
P,

—C2X3%2

—Cp—2Tn—1T2
*Cn—lxn,fZ

0

—C2X173
—C2X273

Py

—Cp—2Tn—1T3
*Cn—lxnfS

0

38

—Cp—2T1Tp_1
—Cp—2T2%p_1

—Cp—2T3Tp—1

Pn—l
*Cn—lxn'fn—l

0

0
_Cn71x2jn

_cnfleIEn

—Cp—1Tn—1Tn
P7L
0

Cno1 20,0 < < 1andr € N. We define the

—UT1Ty,

Pn+1




where

p (g +agcp” + o 1ot F )
Py = p (g +agerp” F oA apCroapt” + ancpoy i)
=

"(os +agerp” + o Cuop” o, 1)

P, = p"(ag+ast+as+...+ay)

Poyn = p(an+arep” + coaop” + .o+ ap1cpi )

4.3 Positivity

A crucial problem in applications of positive maps is checking whether or not they
are positive. Determining that a linear map is positive is equivalent to detecting
nonnegativity of biquadratic forms. It is known that there exist a positive semidefinite
biquadratic form which is not a sum of squares of bilinear forms ([16], Theorem 1).
We show the positivity of the map 1) by expressing the positive semidefinite matrix
(X)) as a sum of squares of bilinear forms.

The linear map v, ....c,_,) is uniquely determined by the polynomial function;

Fur,. . e, t) = Ter.on (X)])5T (4.3.1)

as a biquadratic function of vector v € R"™ and ¢ € C . The linear map ¢(,c,... cn 1)

is positive if and only if F(vy,...,v,41,t) is positive semidefinite (a sum of squares).
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4.3.1 Positivity of the linear map v, )
Lemma 4.1. Let 0 < p <1 and ¢; > 0. Then the function
F(vi,v9,v3,t) = p " (1L + ot )wf + =" (14 [t)v3 + " (cip” + |t])v3 — 2vjv3uRe(t)  (4.3.2)

is positive semidefinite for all vy, ve,v3 € R and t € C.

Proof. 1f v1 = 0, we have that;
F(0, 03, 03,8) = =" (1 + [t + 5™ (er” + [t = 0.

Assume F(vy,v9,v3,t) < 0 and v; # 0 and. Since 0 < g < 1. By completing squares;

F(Ula V2, U3, t)

= p (L4 altw ol + p (1 + [E)vs + " (ep” + [¢)v5 — 2viu3pRe(t)
= afthf + T (1 [t)vs + pTTews + (o] = 2vvspRe(t) + p77 [t3)
= althf+pT (1 [tho; +p e

" [(or — T Re(t)us)? + () — 2P Re(t)?)od]

< 0.
Letting t = a +ib € C. Since ¢; > 0 and 0 < p < 1. From the coefficient of vg,

1= 1 Re(t) = Jal? + [bf? — 2 o]

= la*(1—p*™") + [bf?

v

0.

Thus F(vy,vq,v3,t) < 0 is a contradiction. Hence, F(vq,v9,v3,t) > 0 for every

vy, v9,v3 € Rand t € C. O
Proposition 4.2. The linear map 1, ,) s positive.
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Proof. We need to show that,

t
for every s,t € C is,
T —
v w7 s| 4+t 0 — st v
v 0 wr(sl+1) 0 w |20 (133
U3 —uts 0 cils| + p |t U3

for every vy, vo,v3 € R and s,t € C.

Let s = 0. Then,
cr[tlof + T tvs 4+ T [Evg > 0.

If s # 0. Assume that s = 1. Then,
1
P ( 1t ) z
yields the inequality.

(" + et + p (1 + [E)vs + (cr + 7" [t])v] — 2v1v3Re(t) > 0.

By Lemma 4.1, 9, ) is positive. [

4.3.2 Positivity of the linear maps

Macth)

We characterize the positivity of the map 1, ¢) for v = (v1,v2,v3,v4) € R* and

teC.
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Lemma 4.3. Let 0 < p <1 and c1,co > 0. Then the function

F(v1,v2,v3,v4,) = =" (L + cop” + colt|u")vf + ™" (1 + ealt|u” + cop” o3

(2 [t)vs + ([t A+ et + cop”)v: — 2c1v100 — 263Re(t)vavs — 2uRe(t)v vy

18 positive semidefinite for every vy, vo,v3,v4 € R and t € C provided it satisfies the

mequalities:

W (4.3.4)
w > co. (4.3.5)
(&) Z C1. (436)

Proof. 1t v; = 0. Then,
F(O7U2,U3,U4,t)

= (L4t + cop" )3 4+ 7" (2 + [t)v3 + ([t 4 cap” + cop”)vi — 2coRe(t)vovs
= (calt| 4 c2)vs + 20703 4+ p T ([t + crp” + cop”)vi + (T 05 — 2vavscaRe(t) + p " [to3)
= (c]t|+e2)vs + " (Jt] + eap” + cop” )i 4 17" (v2 — pcoRe(t)vs)?

H2uT" A+ Tt = " SRe(t)?) v,
F(0,vq,v3,v4,t) is positive when the coefficient of v2 satisfies the inequality,
(2 4 [t]) — AR (t)* > 0. (4.3.7)

Letting ¢t = a + tb. We have that,

R H) — AR = 2 (¥ (ol + b))

= 277+ p b+ o (7~ )

is positive whenever p~" > ¢y holds.
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If v, =0. Then
F(Ul,o,’ljg,'l)4,t)

= (L ap” +eoltlun)of + p T2+ [t)of 4+ pT T ([E + eop” + cop” v — 2uRe(t)vr1vs
= (e + coltlu" o 4+ pTT (2 4 [E)0F + T (eip” + cop”)od

+(u" "0} — 2vyvgpRe(t) + p " [to3)
= p (e + eoltlp o (2 [H)oF + pTT (ep” + cop” vl

" (o — BT Re()0a)” + 7 (1] — W2 Re(t))0]

Y

0.

If v3 =0. Then ,
F(Ul,Ug,O,U4,t)

= (e + et o + pT (14 et + exp”)os
([t + eap” + eop”)vi — 2c1v1v5 — 2uRe(t)vivy
= cofthof + uT (14 cop" s + (e + )y
+(p 07 = 2upvguRe(t) + p"[td) + ¢ (v — 20,09 + [t03)
= coftfo] + p (1 + cop)vs + (e1 + eo)vf + p7 (o1 — ' T Re(t)vs)”

+u " (Jt] = TP Re(t)?)vf + (v — v2)® + er(Jt] — 1)v3.
From the coefficients of v2,
prteta(lt|—-1) = (W —c)+cea+talt] >0. (4.3.8)

Therefore, F'(vy,vs,0,v4,t) is positive whenever =" — ¢; > 0 holds. If vy = 0. Then,
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F(Ula Vg, U3, 07 t)

= (e’ + et o + pT (14 et + cop”)os
+177(2 + [t))vi — 2c1v105 — 2coRe(t)vovs

= p"(1+ colt|u")v? + covy + 2u7"v3 + ¢ (v — 2u1v + [t3)
(05 — 2coRe(t)vavy + p"[t]03)

= p"(1+ colt|u") v + 20705 + covs + ¢ (vr — v2)® + e (Jt] — 1)v3

" (vy =l esRe(t)vs)” + (77| — p 5 Re(t)?)s.
From coefficients of v3 we have that,
Co —|—Cl‘t| — (1 > 0

Thus, F(v1,vq,v3,0,t) is positive provided co — ¢; > 0.
Let v; # 0,7 = 1,2,3,4 and assume that there exist vy, vy, v3,v4 € R and t € C such
that v; # 0 and F'(vy, ve, v3,v4,t) < 0. Since 0 < p < 1 and ¢, ¢ > 0. Then,

F(Ula V2, V3, U4, t)

= (1 +ap” + et )i+ (14 et + cop” vy + (2 + [t])v3
([ 4 erp” + cop” v — 2¢1v109 — 2¢oRe(t)vavs — 2uRe(t)v1vy

= p vl 4 T s 4+ 20703 + (e + o)) + e (vr — ve)? + er(Jt] — 1)vd
7" (v = gl eaRe(t)vs)? + (07|t — pfRe(t)?)v;
7" (v — T Re(t)va)” + (07T — 1 Re(t)) 0]

< 0.

This is a contradiction when the inequalities (4.3.7) and (4.3.8) holds . Thus F'(vy, v, v3, v4,t) >

0 for every vy, v9,v3,v4 € R and t € C. O

Proposition 4.4. The linear map ¢, c,) 15 positive if the conditions in Lemma 4.3
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are satisfied.

Proof. We show that,

q
0 s ( g 3 E> € My
t
for every q, s,t € C is;
T —
(o P —C1q8 0 —uqt (o
v —c18q P —cost 0 v
2 154 2 2 2 >0 (4.3.9)
VU3 0 —Cgtg P3 0 U3
(1 —,ut(j 0 0 P4 (W

where,

(gl + ealslp” + calt|p”)
1 ([s] + et + calq|p”)
Pyo= p"(lq] + |s[ + [t])
=

"(It] + crlglpu” + cols|p”)

for every vy, vo,v3,v4 € R and ¢, s,t € C.

Taking ¢ = s = 0.
F<Ulu V2, U3, U47t) = C2M7T‘t|vf + Cl|t|/U§ + /’LiT’ﬂUg + M*T|t‘vi Z 0

If g =0, since 0 < p < 1, by inequality (4.3.7),
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F(Ula V2, V3, V4, t)

= (c1+ lt))vf + (1 + ci|t))vs + " (1 + [t)v3 + (w7t + c2)v] — 2coRe(t)vavs

> 0.

If s =0,

F(Ula Vg, U3, V4, t)

= (14 colt))of + (ealt] + ea)vg + p " (1 + [t))vF + p7" (Jt] + cop”)vi — 2uRe(t)vivy
= colt|v] + (er]t| + ea)vs + 7 (1 + [H))v3 + crvf + p (v — p T Re(t)vy)?

+(u T[] = T Re(t)?) v

v

0.

If ¢ and s are not equal to zero. Assume that ¢ = s = 1. Then, by Lemma 4.3

1
2T 1 ( 11 ¢ ) z
t
is positive for every v = (v1, v2,v3,v4) € R* and t € C O

4.3.3 Positivity of the linear maps

/'L701702a03)

Lemma 4.5. Let 0 < u <1 and c1,c9,c3 > 0. Then the function

F(v1,v2, 03,04, 05,) = p7" (L crpt” +copt” +eslt|pu")oi + " (L4 cop” +colt| " +csp” o3
(L et + eop” + capn) o3 + T (3 4 [V A+ T ([E A+ cop” + cop” + cap” )
—2¢10109 — 2C20103 — 2C90903 — 2c3Re(t)vavy — 2¢3 Re(t)vsvy — 2uRe(t)vivs

1s positive semidefinite for every vy, v, v3,v4,v5 and t € C whenever it satisfies the
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mequalities,

u "> 2es, (4.3.10)
W > 2, (4.3.11)

w" > e, (4.3.12)
ap" >l (4.3.13)

Proof. 1f v1 = 0. Then,

F(0, v, v3, 04, vs5, )

= p (1 + apu” + colt|p” + capm)vs + pTT (1 + er|t|u” + cop” + cap”)vi + (3 + [t])vd
([t + erp” + cop” + c3p”)vE — 2cov9v3 — 2c3Re(t) vy — 2c3Re(t)vzvy

= p7 (L4 )3 + (L4 e ft[pn)os + 37 of + pTT ([t + e’ + cop” + eap”)vl
oo (vg — )2 + eo([t] — 1)v3 + c3(vy — Re(t)va)? + (u "4 — c3Re(t)?)0]

+ez(vs — Re(t)v)? + (" — czRe(t)?)03.

From the coefficients of v2 and v we have,
p et altl—c = (0T =)+ + el
and
3"+ p Tt = 2csRe(t)? = 3uT" 4+ p " (|al® + |b]?) — 2c3|al?

respectively. The function F(0,vq,vs, vy, v5,t) > 0 whenever it satisfies the inequali-

ties, u=" > co and pu" > 2cs.

If v, = 0. Then ,
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F(Ula 07 U3, U4, Us, t)

= u(1+ap” + g’ + calt|u" ) + (1 + et + eop” + csp”)vs
(3 [tDvd 4+ ([t e o+ cap” vz
—2covyv3 — 2¢c3Re(t)vsvy — 2uRe(t)vv5

= (c1 + cslt)v? + (erft] + c3)vs + 3u " vi + (c1 + e + c3)v + ea(vy — v3)?
+i " (vs — i esRe(t)va)” + (77t — pesRe(t)*)vy

+u~" (v — T Re(t)vs)” + (7T — T Re(t)?) 0

v

0
whenever the coefficients of v? satisfies the inequality

pTB ) — sRe(t)® = 3u7* +p7 (|af* + B]°) — 3laf*  (4.3.14)

v

0

whenever (4.3.10) holds.
If v3 =0. Then

F(Ula V2, 07 V4, Us, t)

= p (e + op” + et vl + pTT (U4 ep” 4 oty + et vl
(3 [t)vE 4+ ([t e o+ cap” vz
—2c1v1v9 — 2c3Re(t)vaug — 2uRe(t)vyvs

= (e + cslt)v? + (e1 + calt))vs + 3u " vF + (c1 + e + e3)vE + 1 (v — v)?
+(eg = c)vy + p7"(vy — pesRe(t)va)” + (u77[t] — pc3Re(t)?) v

+u" (v — T Re(t)vs)” + (7] — T Re(t)?)03

v

0
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with the coefficients of v satisfying the inequality (4.3.10).
If vy = 0. Then,

F(Ula Va2, U3, 07 Us, t)

>

(L4 eapi” + cop” + ealtlp")vr + (14 cop” + colt|p” + eap”)vs
FpTT (L et cop” + eap” s + T ([ e’ cop” + cap” )3
—2010109 — 2Co0103 — 2Co0903 — 21uRe(t)vvs

cslt|of + ervg + (L4 et + cap”)vs + T (8] + e’ + cop” + cap g
+er(vr — v2)? + ea(vr — v3)* 4+ " (V3 — peaue)? + (colt] — p"c)vs +
(o — i T Re(t)vs)? + (T[] — T Re(t) s

0

The function F(vy,ve,v3,0, vs,t) is positive if the coefficients of v3 satisfies the inequal-

ity (4.3.13).

If v5 = 0. Then,

F(Ula Vg, V3, V4, 07 t)

(L et + cop” + st )vi + (1 + eapd” + colt|pu” + cap” )3
T (L ety + cop” + eap” oz + (3 4 [t])o]

—2010109 — 2090103 — 2C90903 — 2c3Re(t)vovy — 2¢3 Re(t)vsvy

(1 + eslt|p")vf + csvd 4+ p vy + 3p7"v; + er(vr — v9)® + ca(vy — v3)?

+co(|t|vg — v3)? + (e1]t] — co)va + " (vg — cyp"Re(t)vy)?

t t
T’—2| — p"cARe(t)?)vg + c3(vs — Re(t)vy)? + (pf"u — c3Re(t)?)v;

+ (e 5

The function F(vy,ve,vs,v4,0,t) is positive whenever the coefficients of v3 satisfies

(4.3.12) while the coefficients v? satisfies the inequalities (4.3.10) and (4.3.11).
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Let v; # 0,1 =1,2,3,4,5 and assume that there exist vy, vy, v3,v4,v5 € Real and t € C

such that vy # 0 and F'(vy, va, v3,v4,v5,t) < 0. Since 0 < p < 1 and ¢;, ¢ > 0. Then,

F(Ula V2, V3, U4, Us, t)

(L4 eapt” + copt” + st v + (1 + eap” + colt|p” + cap”)v3

ST et + e+ et E (3 [0

+u (| + e + e’ + cap” Yoz

—201010y — 200103 — 2090903 — 2c3Re(t)vavy — 2¢c3Re(t)vsvy — 2uRe(t)vyvs
cslt|vf + s + s 4 3] 4 (01 4 ca + e3)vE + e (v — vy)?

+eaer — e3)* + ca([tjvg — v3)* + (co|t| — c2)v§ + c3(vy — Re(t)vy)?
_Tﬂ

2
+1" (01 — ' Re(t)vs)? + (|t — p*T Re(t)?)03

t
+(1 — csRe(t)?)v? + c3(vs — Re(t)vy)? + (,u_rg — csRe(t)?)0]

0.

This is a contradiction when the inequalities (4.3.10) and (4.3.12) holds .

Thus, F(vy, vy, v3,v4,v5,t) > 0 for every vy, vg, v3,v4,v5 € Real and t € C ]

Proposition 4.6. The linear map e, cs,c5) : Ma —> Ms is positive provided Lemma

4.5 1s satisfied.

Proof. We show that,

° r +
V(u,cr,ca,08) (q 5w t) e M;

for every ¢, s,u,t € C.
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That is,

U1
V2
U3

Uy

Us

where,

b1
—C18q

—Cuq

—pitq

D1
P2
p3
P4

Ds

—C195  —CoqU 0

p

—CoUS D3

2

—C9SU  —c3st

—csut

- 03t§ —Cgtﬂ Pa

0

I
!

!

(gl + |s| + |ul + |t])

Ju

0 0

r

T

T

for every vy, va,v3,04,v5 € R and ¢, s, u,t € C.

Taking g = s =u =0,

—pgt

0
0

Ps

U1

V2

U3

Uy

Us

q| + |sleip” + |uleap” + cslt|p”)
|s| + |ulerp” + cot| " + |qlesp”)

(
(
"(lul + ert|p” + lgleap” + |sleap”)
(
(

[t + [qlcip” + |s|eap” + [ulesp”)

cslt|v] + colt|vs + er|tlvs + T [Evg + pT|Eo2 > 0.

o1

(4.3.15)



If g =0, given that 0 < p < 1. Then,

(c1+co+eslthvi + " (1 + ey + colt|u" vy + " (1 + eop” + cap”)vs
(2 [E)0F + ([ cop” + cap” )0
—2¢90903 — 2c3Re(t)vavy — 2¢3Re(t)vgvy

= (c1+co+asft))of + vy + pTTvs + 207 0 + ([ cop”

c T T
+ezi")vE + co|t|vg — v3)? + (C—1 — 1)vs + " (vg — p"csRe(t)vy)?
2
—r 3 r —r 3
+(p % — " c3Re(t)?)v] + c3(vs — Re(t)vs)? + (u % — c3Re(t)?)v]

is positive by inequality (4.3.10) and (4.3.12).
If s =0. Since 0 < p < 1. Then,

P (Lt eopt” + estun)ot + (e + alt] + e5)v3 + p 7 (L ealtlp” + cop”)vs
+u7"(2 4 [t)vi + ([ + e + cap” )z
—2vyu3¢e — 2uzvacsRe(t) — 2v1v5uRe(t)

= csltlo] + (e1 + eolt] + c3)v5 + crftos + 207" vF + (e1 + e3)v3 + ca(vr — v3)”
" (03 — pesRe(t)va)® + (7|t — p'ERe(t)?)v]

" (v = T Re(t)vs)? + ([T — 2T Re(t)?)v3

is positive when the inequality (4.3.12) holds.
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Ifu=0and 0 <p <1 Then,

(L eap” + eaft|p v + (1 colt " + cap”)v
Herlt] + ez + ez)vd + T (2 [E)of + T ([ + "
+eop” Vi — 2c101v9 — 2c3Re(t)vavy — 2uRe(t)vivs
= caftlof + uT (1 + colt)o + (ealt] + eo + c3)vd + 27T 0E + (1 + o)
2

+er(vy —v9)? + (7" — e1)vy + e3(vg — Re(t)vyg)® + (0" [t| — csRe(t)?)v]

+u" (v — T Re(t)vs)” + ([t — T Re(t)?)v3

is positive when the inequalities (4.3.10) and (4.3.11) are satisfied.

Now if ¢, s and u are not equal to zero. Assume that ¢ = s =« = 1. Then, by Lemma

4.5
1
T 1 _
z w(u,CLCQ,Cg) < 1 1 1 t ) ¥
1
t
is positive for every v = (vy, vy, v3,v4,v5) € R® and t € C O

4.4 Complete (co)positivity of the linear maps

4.4.1 k-positivity and complete positivity

Here we show that, if a positive linear map 1 from M, to M,, is k-positive where,

k < min{n,m}, then the map is completely positive.

Proposition 4.7. Let ¢ : M,, — M,, be a positive linear map and k < min{n,m}.

Then the following are equivalent.
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(1). ¥ is k-positive.

(ii). The block matriz [ (Ey;)]k

Proof. ()= (ii)

i.j=1

> 0, where (E;;) are matriz units in M,,.

Let ¢ be k-positive, then it is clear that the map (1 ® ¥) : Mp @ M,, = M @ M,,

is positive. Since the matrix [E;;]%_, >0,

(e ® w)[Eij]§I:1 = W(Ez)]f]ﬂ

is positive.
(ii)= (i)
Let the block matrix [¢(E;;)|F

ij=1

by e; so that the set E;; = e;e; is a basis for M.

Now let [Ez]] k

ij=1

W(Ey)] =

= F;; ® Bij € My, ® M,,, there exist V,..

VI Ey]Ve

(It @ V) (Eij @ Eij ) (I @ V)
(B @ VI E;)(Ir @ V)
Ei; @ V' E,;V

k

> (B @ ¢([Ey)))

ij=1

(I @ V) (Ey @ [Ej))

(Eij @ Y([Ey]))-

V€ My, so that;

(4.4.1)

be positive and let the standard basis for C" be given

O

Proposition 4.8. Let ¢ : M,, — M,, be a positive linear map and k < min{n,m}.

Then the following are equivalent.

(i.) v is k-copositive.
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(ii.) The block matriz [(Ej;)|F,—, is positive, where (Ej;) are matriz units in M,,.

Proof. (i)= (ii)
Let ¢ be k-copositive, then the map (1, ® V) : My ® M,, = M) @ M,, is positive.

. . k . oy . . k . R .
Since the matrix [Eij]m-:l 18 positive 1ts transpose matrix [Eji]j,zzl is positive in M,,,

(o @ ) [Ejilk 1=y = [W(E)]Y o

is positive.
(if)= (i)

We show that the map (I ® 1) is positive if the block matrix [¢(Ej;)]5,_, is positive.

Let the block matrix [1)(E};)]¥;,—; be positive and let the standard basis for C" be

given by e; so that the set Fj; = (e;e;)T is a basis for M.

Now let [E;]%._, = Ei; @ Eji € My ® M., there exist Vi, ..., V, € M, so that;

j’/[::

[W(E;)] = VI[Eu]V:
= (k@ V") (E; @ Eyj) (I, @ V)
= (Eij ® V*Eji)([k X V)

= E; @ V'E;V
k

= > (E; @ ¢((E;])

ij=1

= (I, ®9Y)(By; ® [Ej)).
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4.4.2 Characterization of the structure of the Choi matrices

for 2—positive maps

Let the v : M,, — M,,;1 be a linear positive map where n > 1,2,3,.... We define

the Choi matrix of these linear maps as 2 x 2 block matrix with (double line) partitions

of the form;
a1 | €11 €12 ... ... Cim 0 Y Y2 oo o Yim
(_311 bll 0 cee e O 511 tll t12 cee e tlm
521 0 1922 . 521 t21 t22 el e t21m
0
Cmil O oo o0 0 bl Zmi | tmr tm2 - oo tm
Cw = (4.4.2)

0 | 0 2z 212 .. 2k || du | Juu fiz oo oo fim
Y11 2?11 2?12 cee e Elm f_11 Upip U2 -+ ... Ulm
Y21 2?21 522 cee e LT2m f21 U21 U222 ... ... U2m
gml Eml EmQ e e Emm f_ml Uml Um2 . ... Umm

which we represent as:

a Cle 0 lexm
*>< Bm m Z:;zx Tm m
C,= | —mt Lomx (4.4.3)
0 Z1><m d F1><m
Yn*mxl ijmxm F;lxl Ume

where a, d are positive real numbers while B, U and T are positive semidefinite matri-

ces in M,,, and C,Y, Z are vectors in C™. By ¢;; we denote the conjugate of ¢;; € C.
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Next we wish to characterize complete positivity and complete copositivity with re-
spect to the Choi matrix (4.4.3). We begin by introducing a lemma that will aid in

understanding the main propositions.

Lemma 4.9. Let A and B be positive diagonal matrices of order n and k respectively.

A C

Then M = 1$ a positive matriz of order n+k satisfying the matriz inequality
C* B
C*AC < (det A)B.

A ¢

Proof. Let M = where A € M,,_1, c € C" ! and b € R. Since A is a positive
c b

diagonal matrix and by Theorem. 3.8 and Theorem. (3.6,

det M = det A. det(b — ¢* A7) < det A. det(b — ¢*

e e et(b—c c) < de et( cdetAC)

but det M is positive therefore b — C*ﬁc > 0. Thus ¢*Ac < (det A)b.
A C

Let M = where A € M,_5, C € My,,_» and B € M,. By Theorem. 3.8,
C* B

Theorem. 3.6 and Theorem. 3.9.

A
det A

det M = det A. det(B — C*A™'C) < det A. det(B — C* C)>0

therefore C*AC < (det A)B.
Next let n = k. Because A is invertible. By Theorem. 3.6 and block positivity of
matrices, B — C*A~1C > 0. So,

B—C*A—lch—O*iczo

det A
" . An Caxk . . .
Now let n < k, writing M in form . A is a diagonal matrix, By
Cl:xn By,
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Theorem. 3.8, Theorem. 3.6 and Theorem. 3.9.

det M = (det A,).det(By — Cj,., A Crxi)
A

Cnxkr) Z 0

which holds if and only if C},,, A, Chrxi < (det A)By. O

xXn

Recall that ¢ is completely positive if and only if [t)(x;;)]* is block-positive. We

describe the conditions for complete positivity (complete copositivity) of this map.

Proposition 4.10. Let ¢ : M,, — M, 11 be a 2-positive map with the Choi matriz

of the form 4.4.53. Then 1 is completely positive if the following conditions holds.

(1). Z =0.

(i1). C*C < aB.

(1ii). F*F > dU.

(iv) Y*Y < al.

(v) if B is invertible, then TB™'T* < U.
Proof. Let L; be a linear subspace generated by the vectors e; and let Ly, be the
subspace spanned by es,..., e, so that C? = Ly & Ly. A vector v € C? can therefore
be uniquely decomposed to v = v! + v? where v* € L;,;i = 1,2. The Choi matrix

((4.4.3) is represented as operators. B,T,U : Ly — Lo, C,Y,Z : Ly — L4, and

A, D : Ly — Ly. For any vy, v € C? the positivity of the Choi matrices is given by

a Clxm O }/1><m
v Cc* Brxm | 27, Txm v
< 1 ’ mx1 X x1 X 1 > (444)
(0 0 Z1sm d  Fignm Uy
Yr;:xl T;LXTTL F;le Umxm




which generates the inequality,

(i, (& §) o) + (o, (& F)va) + (v, (LX) va) + (va, (( A)vr) > 0. (4.4.5)

which is equivalent to

@, av"y + 0, Bo?) + (05", dv§?) + (08P, UuS?) + 2Re (M), C0®))

+2Re<v§ ,Fvé2)> + 2Re(vl ,Yvél)) + 2Re<v§ ,Zv§ )> + 2Re<v§2 ,TU§2)> >0

) 4

where v; = v;” + forj—12andvl,()€L aIld’Ul,(Q)GLQ.

Assume that v§ ) = véz) = 0 with vf) an arbitrary element in Lo. This gives

<v§2), Bv§ )+ 2Re<v2 ,Zv§ )> + (vél), avél)> > 0. (4.4.6)
Letting vél) = —ozZv%Q) for some o > 0,
0 Bu?) 4+ 2Re(—azv\?, 20y + (—aZv? | —daZo®) > 0 (4.4.7)
This simplify to
(W, Bu?) — a||Zo?|* + 2| Z] P (v, dvi?) > 0. (4.4.8)

This holds for any vgl) € Ly and a > 0 only for Z = 0.

Next, assume that ¢ is a 2-positive linear map. The Choi matrix, (4.4.3) can be

represented as;

> 0. (4.4.9)
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By Remark 3.7. Let a = 0, then

a C
Y(E) = >0
cC* B

provided C' = 0. However, if a # 0. Then C*C < aB. It is clear that

d F
V(Eo) =
F* U
1 (Esqs is positive whenever F*F < dU.
By Remark 3.7. Let a = 0, then
0 Y
V(E) = >0
Z* T
a 0
if Z = 0. It is clear that the submatrices are positive for every a,d € R*.
0 d
Finally, T*B~'T < U, so
B
< MQ ® Mm
™ U
is positive. ]

Remark 4.11. The transposition in this case imply the Partial Positive transpose of

the Choi matrix, which we denote as Ci € M,(M,11). That is,

a Cign| 0 Zi,

T C1’m><1 Bm><m mel T;LXm
= € My (Myir). (4.4.10)

0 vaxm d F1><m

Zm><1 mem F;klxl Umxm

Proposition 4.12. Let ¢ : M,, — M 11 be a 2-copositive map with the Choi matriz

60



of the form 4.4.53. Then 1 is completely copositive if the following conditions holds.

(1). Y =0.

(it). CC* < aB.

(1ii). FF* <dU.

() ZZ* < aU.

(v) if B is invertible, then T*B™'T = U.
Proof. Let L; be a linear subspace generated by the vectors e; and let Ly, be the
subspace spanned by es,..., e, so that C? = Ly @ Ly. A vector v € C? can therefore
be uniquely decomposed to v = v' 4+ v? where v' € L;,i = 1,2. The Choi matrices

((4.4.3) are interpreted as operators. B,T,U : Ly — Lo, C\Y,Z : Ly — L, and

A, D : Ly — L;. For any vy, v € C? the positivity of the Choi matrices is given by

a Cin| 0 Zi,
< (%1 ’ Cm><1 Bmxm Ym><1 T;“Lxm (%1 > (4411)
(%) 0 Y1*><m d Fle (%)
Zm><1 Tme F;;;xl Ume

which generates the inequality,
(01, (& G )vr) + (o2, (F 7 ) v2) +(on, (P e ) v2) + (v, (377 Jvn) 20, (4.4.12)
which is equivalent to

@, av"y + 0, Bo?) + (0§, dv$D) + (08P, UuS?) + 2Re (v, C0®))

—|—2Re<v§1), Fv§2)> + 2Re(v§1), Zvél)) + 2Re(v§1)7 Yv?)) + 2Re<v§2), TvéQ)) >0
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where v; = vj(»l) + ’Uj(-2) for 7 =1,2, and v§ U (1) € L, and vl U (2) € Ls.

Assume that v(l) = 1)52) =0 and U§2) an arbitrary element in Lo. This gives
0, Bu?) 4+ 2Re(wV vul?) + (08, Doy > 0. (4.4.13)
Letting vél) = —ale for some av > 0

(W®, Bul®) + 2Re(—aVv® Vo) + (~aVu®, —Davv?) > 0 (4.4.14)
This simplify to

@, Bo?y — al|[Yol? |2 + o?||Y |20, Do) > 0 (4.4.15)

which holds for any vél) € Ly and a > 0 only for Y = 0.

Assume that 1 is a 2-copositive linear map. The partial transposition of Choi matrix,

(4.4.3) can be represented as;

Cy = > 0. (4.4.16)

By Lemma 4.9, the positivity of the Choi matrix imply that,

a C*
C B

Y(En) =

Let a = 0, then ¢(E;;) > 0 provided C' = 0. However, if a # 0, then CC* < aB.

d F*
F U

Y(Ex) =

62



It is clear that ¥(FEs) > 0 whenever F'/F* < dU. By Remark 3.7. Let a = 0, then

0 zZ*
U(E) = =0
Y T
a
if Y = 0. It is clearly that the submatrices are positive for every a,d € R*.
0 d
B T
TB~'T* < U, so € My ® M,, is positive. O
™ U

4.4.3 Complete (co)positivity of linear maps v, )

Next we establish the conditions under which the map ), .,) is completely positive

(respectively completely copositive).

Proposition 4.13. The linear map ¢,y : My — M3 is completely positive.

Proof. The Choi matrix C%M) is;

(4.4.17)
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a = =" and which is defined when p > 0. ¢; > 0 since C' is a zero vector as aB > 0.

w0 0
aU =YY = pu" — (0 —u)
0 u —
—2r 0
— H >
0 #727' _ Iu2
This holds when, =2" — p? >0 forallr >0 .
Z is zero vector therefore,
p 0
dB - 77 = ¢ > 0.
0 C1
Finally, the matrix 7' = 0 implying U — TB~'T* = U > 0. [

Proposition 4.14. The linear map ¢,y : My — Ms is completely copositive.

el

Proof. Considering the positive semidefinite matrix X, the Choi matrix of ¢, .,)(X7T)

is

Fnery = NP . (4.4.18)
- 1

linear map. The Choi matrix Cy, ., € Ma(Ms) is of the form (4.4.16). a = p~". It
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is positive for all 4 > 0. ¢; > 0 and C' is a zero matrix as aB > 0.

w0 0
aU —Z2"7 = u " — (0 —u)
0 p —
—2r 0
— . >0
0 #727" _ :U“Q
since p= — p? > 0 for all r > 0.
Since Y is zero vector,
p" 0
dB—-Y'Y = ¢ > 0.
0 C1

Finally, U — TB™'T* = U > 0 since the matrix 7' = 0. Therefore the matrix (2 7) is
positive. O
4.4.4 Complete (co)positivity of linear maps 1, c, c,)
Proposition 4.15. Let ¢, ;) be a linear map. Then the following are equivalent:
(i) Y(per,e0) 8 completely positive,
(1) Vper,co) 8 2-positive and,

(i) Y(p,er,e0) POSIEIVE.

Proof. (ii) = (ii1).

Assume 9, ¢, c,) is 2-positive. Applying Theorem 2.7, consider P = [a;a;] be a positive
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element in My(C) ® My4(C) where a; = (1,0,0,0,0,1,1,1)7, we have that

W . R —u
C2
e
Ty @ Pperen)(P) = | ———— il I (4.4.19)
C1

—C1 | - . . S pTT —eo
—cy "

—u | . . - . oop"

in M3(M,4(C)) is positive semidefinite. By direct calculation of minors one can check
that the conditions in Lemma 4.3 are necessary condition for 2-positivity of ¥, ¢, c,)-

Let Y., ,c;) be a positive map. By computing the choi matrix

g0 0 00 —all 0|00 0 0 —pu
0leec 0 00 0] O0]0 00 0 0
010 g7 00 0]0]0 00 0 0
0/0 0 ¢ 0 0]o0]0 00 0 o0
0|0 e 00 00 0 0
o 00 7| 0[]0 0 0 — 0
e =TT 0 0 0 0 w0 0 0
010 0 00 0] 0 |e 0 0
0/0 0 00 0] 0]0 e o0 0 o0
0/0 0 00 0]0]0 0ec 0 0
0/0 0 00 —| 0[]0 0 0 g7 0
w0 0 00 0] o]0 o0 o0 0 u

(4.4.20)
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in M3(My(C)). Since a > 0,

copu~" 0 0 0 0
0 u? 0 0 0
aB—-C"C = 0 0 cpu™ 0 0
0 0 0 cip" 0
0 0 0 0 u?2r—c
is positive when
p > . (4.4.21)
cop™" 0 0 0 0
0 cop™" 0 0 0
aU =YY = 0 0 creop™" 0 0
0 0 0 cop ™" 0
0 0 0 0 p 2 —pu?
This is positive when
w >t (4.4.22)
co 0 0 0 0
0 ¢ O 0 0
U-TB7'T = | 0 0 ¢ 0 0 | >0
0 0 0 p"—cu" 0
0 0 O 0 wr
This is positive when
p "> co. (4.4.23)

Since (iii) is satisfied, the inequalities (4.4.21) and (4.4.23) holds, and consequently
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Cw(u%%) is positive definite. Hence, complete positivity of 1 (,.c, c,) follows.

1) = (12) Let e1.c») be a completely positive map. From the matrices (4.4.19) and
(/"7 1, 2)

(4.4.20) we have that,

>0 (4.4.24)

Thus ¥(,.¢, ey) 1 2-positive. ]

Proposition 4.16. Let ¢, ,) be a map. Then following conditions are equivalent:

(i) @Z’(mcl,@) 18 2-copositive,

(ii) Y(ucr,e0) s completely copositive.

(iii) e, >c, ap™>c and ¢ > p.

Proof. (1ii) = (i)

Assume the set of inequalities

cp>c1, ap " >c and ¢ > p (4.4.25)
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hold. Consider P as in Proposition 4.15. We have that the 2-copositivity matrix,

-

Co . =

-

72 & Yueonen)(P) = i B

-1 . —u| a ) . —C
-
-

—Ca | . .ooouTT

(4.4.26)

in M3(My(C)) is positive semidefinite with all the principal minors positive semidef-
inite.

() = (i)
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By computation the choi matrix,

gl o0 0o o ofofo 0o 0o 0 o0
0le 0 0 - 0|0[0 0 0 0 0
00 w7 0 0 0 o]0 o o0 0 0
Oy0 0 &« 0 0400 — 0 0 0
0= 0 0 & 0| 0]0 0 0 0 0
r 0|0 0 0 0 pw"fO]0O 0 0 0 0
lueries) 0/ 0 0 0 0 0 |u"l0 0 — 0 0
0/l0 0 0 0 010 0 0 0 0
0 0 0 —u 0 0 0 1]0 ¢ O 0 0
0|0 0 0 0 O0f-c/0 0 ¢ 0 0
0o 0 0 0 0] o0f0 0 0 puT O
0o/0 0 0 0 O0OfO0f0 0O 0 0 g

in Mg(M;L(C))

Assume Y((.c;,c) 15 @ 2-copositive linear map

aB—C"C = p"| o

is positive when ¢y — ¢; > 0.

(4.4.27)

. Since a > 0 and C' is a zero matrix,

Since Z is a zero vector, and U is a diagonal matrix with all positive entries,
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aU — 272 > 0.

w ey 0 0 0 0
0 uw ey 0 0 0
dU — F'F = 0 0 wpwrei—c2 0 0 >0
0 0 0 w0
0 0 0 0 p
is positive when "¢, > c3.
Finally,
Cy  —C 0 0 0
—Cy Cy 0 0 0
U-TB7'T = 0 0 o-% 0
0 0 0 a0

is positive when, c¢; > pu.
Since set of inequalities in (4.4.25) are satisfied, ng : is positive semidefinite.
»€1,C2

(17) = (i) Tt is clear that if C’i( is positive semidefinite the the set of inequalities

Byc1,62)
(4.4.25) hold. O

4.4.5 Completely (co)positivity of 1, c, c,.c)

Proposition 4.17. Let Y (e, co,c5) b€ a positive map. Then following conditions are

equivalent:

(i) 1/}(11761,02,(:3) 18 Q‘pOSitive.

(1) V(uer,e0,e5) 15 completely positive.
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Proof. (i) = (dii).

Assume Y, ¢, cy,c5) 1 2-positive. The Choi matrix C¢(u,c1,c2,c3> is;
wo" —c1 —Ca —H
c3
&)
p"
1
Cc1
—C ur —Co —c3
3
ﬂf’r’
C2
C2
1
—Cy —C2 pr —c3
pr
C3
C3
C2
C1
—c3 —c3 p
—p SopT
(4.4.28)
Since a > 0,
csp~" 0 0 0 0 0 0 0 0
0 cop™ 0 0 0 0 0 0 0
0 0 u 2 o0 0 0 0 0 0
0 0 0 cap™ 0 0 0 0 0
aB —-C"C = 0 0 0 0 ap™ 0 0 0 0
0 0 0 0 0 w?r-c2 o 0 0
0 0 0 0 0 0 csu ™ 0 0
0 0 0 0 0 0 0 w2 0
0 0 0 0 0 0 0 0 cop T
The inequality holds when
wt > . (4.4.29)
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C1

lLLfT‘

—c3

C2

au

The inequality dU > 0 holds when

(4.4.30)

u_r > C3.

cp "

—cap "

—2r 2
BTG

#72'r

cap~ "

cap"

cap™"

cp"

Iu—2r

—c3p"

M—Qr _ u2

alU =YY

is positive whenever

(4.4.31)

2, 2
5+ C5.

—2T>C
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From positivity of 1. c,c;) this holds since p=™" > ¢y and =" > ¢3. U —T*BT

cg 0 0 0 0 0 O 0 0 0o 0 00 0 O0O0O 0 0
0O pu ™ O 0 0 0 0 —e3 O 0o 0 00 0 O0O0 0 0
0 O w’™ 0 0 0 O 0 0 0o 0 00 0 O0O0 0 0
0 0 0 ¢ 0 0 O 0 0 o 0 00 0 O0O0O 0 O
= 0 0 0 0 ec3 0 O 0 0 -1 0 0 O0OO0OO0OOO0O O O
0 0 0 0 0 ¢ O 0 0 0 —c2 00 0 0 0 —c3 O
0 0 0 0 0 0 0 0 o o0 0 0 0 0 0 0 O
0 —c3 O 0 0 O w0 o o0 0 0 0 0 0 0 O
0 0 0 0 O 0 0 ur o o0 0 0 0 0 0 0 O
é o 0o 0 o O 0 0 O 00 0 0O0 O O0O00O0
0 é o 0 o0 o0 0 0 0 00 00 0 —c 000
O 0 w~ 0 0 0 0 0 O 00 0O0O0 O O0O0UO
0 0 O é 0O 0 0 0 O o0 000 0O 0O00O0
X 0 0 0 O é 0o 0 0 O o0 000 0O 0O00O0
O 0 o0 O 0O w 0 0 0 o0 000 0O 000
0o 0 o 0 0 O % 0 O o0 000 0O 000
O 0 o0 0 0 O w0 00 00 0 —3 000
o 0 o O O 0 o0 O i 00 00O O O0O00O0
cg 0 0 0 0 O 0 0 0
0O pw™ O 0 O 0 —c3 0
0 0O w "™ 0 0 0 0 0 0
0 0 0 e 0 O 0 0 0
= 0 0 0 0 c3 O 0 0 0
0 0 0 0 0 co 0 0 0
0 0 0 0 0 0 cn—c3u—cu~ 0 0
0 —c3 O 0 0 O 0 w0
0 0 0 0 0 O 0 0 wur
All the principal minors of U — T B~'T are positive whenever =" > c3 and
e — (3 +c3) > 0. (4.4.32)
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From positivity of 1, c; s ,c;) this holds since =" > ¢ and c;p™" > c3. Thus Y(uer,ea,3)

is completely positive.

Assume 9, ¢, p,c;) 1S completely positive. Since a completely positive linear map is

positive, consider a rank one matrix P = [z;z;] a positive element in My(M;5(C))

where z; = (1,1,0,0,1,1,0,0,1,1)T,. We have that

1, ® ¢(u,01,62703)<P)

provided

W —C1 —Cy —
C3
&)
w
— “ (4.4.33)
C1
—C1 pt o —c —c3
—Cy —co WU —cs
—c3 —c3 p"
—u ur
in My(Ms5(C)). From the matrices (4.4.28) and (4.4.33),
pto—e —co %
—cp u" —cg —c3
—Ccy —Ccy pT" —cs >0 (4.4.34)
—Cc3 —Cc3 p
7 7
W >c, p">cp and pT" > cs. (4.4.35)
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Thus ¥ (,.c; e0,c5) 18 2-positive. O

Proposition 4.18. Let Y ((y.c, co,c5) b€ @ positive map. Then following conditions are

equivalent:

(1) V(uer,ea,e5) 5 completely copositive.

(ii) Y(pe1,00,05) 15 2-copositive.

Proof. (i) = (i1). Assume (., c,.cp) 15 completely copositive. Since a completely
copositive map is positive, consider a rank one matrix P an element in My(M;5(C))

where z; = (1,1,0,0,1,1,0,0,1,1), we have that,

14
C3 . . . —C1
Co . . —C9
—-r
1
C1 — U
To ® ¢(u,c1,c2,c3)(P) =
—C —C —H] G
p o—ca —c3
—Cc2 P —c3

in M3(M;5(C)). By computation of the minors, Zs ® Y.c, c,c5) (P) 18 positive semidef-

inite on condition that;

P>, pt > wm =2 e3> and o > o (4.4.36)

holds. Thus (¢, cs,c5) 18 2-copositive.
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ive
= os1t1v
is 2-cop
S
) 1
2,C3
Y(per,e
me
). Assu
i).

v 1,¢2:¢3)
V(e

ix is,
1 matrix
1m
ion the cho
tatl
u
omp
By c

C3

—c1

C2

—C

C1
C1 3

12

C3

C2

—Co

—c9

—c3

—Co

C2

—Co

—c3

C1

—c3

C3

—c3

C3

C2

&1




Since a > 0 and C = 0.

3 0 0 0 - O 0O 0 0
0 ¢ 0 O O 0 O 0 0
0O 0 g7 0 0 0 0 0 0
0 0 0 ¢ O 0 0 0 0
aB-CC* = pu"| =4 0 0 0 ¢ 0O 0 0 0
0O 0 0 0 0 w7”™ 0 0 0
0 0 0 0 0 0 ¢ 0 0
0O 0 0 0 0 0 0 u7T™ 0
0 0 0 0 0 0 0 0 «c

The inequality holds when c3 > ¢;.

Since F is a zero matrix, dU — FF* is positive when the inequality ¢;p~" > ¢3 holds.

wes 0 0 0 0 0 0 0 0
0 pr—c2 0 0 0 0 0 0 0
0 0 po2r 0 0 0 —c3p~" 0 0
0 0 0 wes 0 0 0 0 0
aU —Z27% = 0 0 0 0 u"es 0 0 0 0
0 0 0 0 0 w"eo 0 0 0
0 0 —c3pu™" 0 0 0 e 0 0
0 0 0 0 0 0 0 p=2r 0
0 0 0 0 0 0 0 0 u %

The matrix is positive when the inequalities ©=%" — ¢ and cou™" > ¢3 holds.

Finally,
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& 0 0 0 0 0 0 0 0 0 00
0O w" 0 0 0 0 0 0 0 0 00

0 0 7 0 0 0 —5 0 0 0 00

0 0 0 ¢ 0 0 0 0 0 0 00
=]o0o 0 0 0e o0 0 0 0 |-| 0 00
0 0 0 0 0 ¢ 0 0 0 0 00

0 0 -5 0 0 0 & 0 0 —e, 00

0 0 0 0 0 0 0 p7 0 0 00

0 0 0 0 0 0 0 0 uv 0 00

G 0 0 0 —a 0 0 0 oY [ 0 0

0 e 0 0 0 0 0 0 0 0 0

0 0 g™ 0 0 0 0 0 0 0 0

0 0 0 ¢ 0O 0 0 0 0 0 0

x| =es 0 0 0 & 0 0 0 o0 0 0

0 0 0 0 0 pw” 0 0 0 0 0

0 0 0 0 0 0 e 0 0 —e 0

0 0 0 0 0 0 0 u" 0 0 0

0 0 0 0 0 0 0 0 o 0 0

s 00 0 0 0 0 0 0

0 w0 0 0 0 0 0 0

0 0 7 0 0 0  —c 0 0

0 0 0 R 0 0
=]lo o o 0 e 0 0 0 0
0 0 0 0 0 o 0 0 0

0 0 - 0 0 0 “ioaeg 0 0

0 0 0 —c3p!t™ 0 0 0 pw T —c3u" 0

0 0 0 0 0 0 0 0 pr

The matrix U — TB~'T* is positive provided the inequalities,

W >c3, ¢ >cp and cpT" > cg
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holds. Thus the set of inequalities 4.4.36 are satisfied and complete positivity of

U(p, c1, ca, c3) follows. O

4.5 Decomposability of positive maps

The result of Choi [15] shows that a positive map 1 from M,, to M,, is k-decomposable
if there are positive maps ¢, and ¢ from M,, to M,,, where 1, is k-positive and 1), is
k-copositive and such that 1 = 11 +19. We start with an example of a decomposable
linear map 9, from M, to My which is 2—positive and completely positive with

the Chol matrix in the form (4.4.3).

4.5.1 Decomposability by Choi matrices

Example 4.19. Let —% <n< % be a real number and %, be a linear map from

M (C) to M5(C) defined by

a1 7](1’1(’1’2 + .I'Q.ij)
wn(X) = B B
n(xe@1 + x1T2) Qg
where oy = Ziz1 and o = T5s.
The Choi matrix,
1 1
A |7 N
Cy, = (4.5.1)
n
nl.| .1

is completely positive. We observe that the Choi matrix Cy, = ngn and is of the form
(4.4.3).

80



Cupny = S A [ and Cy, =

n |.|-|1=p R R A

The linear map is decomposable when 0 < p < 1 and (1 — p)? > n*. Cy, > 0 when

Z =0 and Cy, >0 when Y = 0. Thus the Choi matrix is decomposable with

1—p|.|. i p

n

n |.|.|1—p S R I

Next, we look at the decomposability of the positie maps ¥ ,.c,,..c,_1)-

Decomposability of linear maps ¥, )
Proposition 4.20. The positive map 1, ., is decomposable.

Proof. Assume 1), ) is 2-positive. Let ¢, + ¢, = ¢; and since there exist 7,0 € R*

T

such ™"+ 07" = ™" (a simple case is by Pythagoras Theorem), then

C’d}l(p,,cl) = (452)

2 I
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is positive for € = 1 and

C¢2(M,C1) -

(4.5.3)

is positive for ¢ = 0. The minors of Cy, are Cy, are positive from Proposition 4.13 and

Proposition 4.14 respectively. Thus 1, ) is decomposable if the Choi matrix C@b(wl)

IS a sum Of Od)l(p,,(:l) and C’IZ}Q(HﬁCl)'

Example 4.21. Let ¢; > 1, r € N, 0 < u > 1. We have that;

€1 — K

Owl(uacﬂ =
C1— M

By Proposition 4.10 we show that Cy, is positive,

Z is a zero vector. Since C' is a zero vector,
0 1 0
aB =p : = > 0.

0 a—p 0 pler—p)
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Since ¢y —pu > 0,dU >0

Finally, since T =0, U — TB~'T* =

alU =YY = pu —

w0
0

is positive.

Next we show that Cy, is positive. Applying Theorem 4.12 for;

Cw2(u,61) -

Y and C'is a zero vectors,

aB—C*C= (™" —p)

aU — Z*7

p—p
p =
I —(1=e)u
—(1—=¢)u f
-y
pt—p
Y 0
w = > 0.
0 p =
Similarly d > 0. so dU > 0 w.ith U positive diagonal matrix.
w— 0 0
—p) - (0 —1—opn )
I —(1=¢)u
—-r 2 0
1) >0
0 (W —p)?—(1—e)u
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since T = 0,
U-TB 'T* =

0 P
is positive. The positive map () is decomposable such that C%wl) = C’%(Wl) +

C%(Ml) . Hence 1, ¢,y is decomposable when 0 < < 1 and ¢; > 1.

Remark 4.22. The decomposition of the map 1), .,) is not unique as shown by the
decomposition below. This is one of the reasons decomposition of positive maps even

in low dimensions is such complicated to be expressed with a unique algorithm.

Example 4.23. Let 7 = 1 and define ¢1 5 : M2(C) — M;3(C). Then the Choi

matrix C¢(1 ) is decomposable with,
ji

|
W=

N | =

oo

Wi

DO [

W=
N |—

Since C'is a zero vector,

1
CLB—C*C:§ > 0.

N

N |=
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3
< 0
d > 0 is a zero square matrix, so dU = % 2 , > 0.
0 3
1
1( 5 0 0
al =YY = -~ | °? -
2\ o9 12 _1
2 3
1
= 0
= 4 >0
0 55
Finally, is positive since
T*
10
U-T*B7'T=| "7 > 0.
o i
2
Thus Cy, is positive.
3
2
3
2
1
2 6
_1 1
6| 2
3
2
3
2
Y and C are zero vectors.
3([350
aB-C*C=>1"7 > 0.
2
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3
< 0
d > 0 is a zero square matrix, so dU = % 2 , > 0.
0 3
3
< 0 0
w27 = S| - (0_1)
2\ ¢ 3 _1 6
2 6
9
= 0
= | Lo
0 3
Finally, is positive as
T*
10
U-T*B'T=| "7 > 0.
o i
2

Thus Cy, is positive. This shows that the decomposition of v, ) not unique.

Decomposability of linear maps v, ., c,)

Proposition 4.24. The linear map V(,.c, ) 1 decomposable.

Proof. Let ™" +0~" = p~" and ¢; + ¢ = ¢; for i = 1,2. Consider the decomposition

86



Cw(uvq,cz) - Cwl(n»qn,czn) + C¢2(0v610762g)’ where

Olw(n,q,%) -

By computation of minors show that C’w%%cz) is positive

n -G —H
Cop Cin
7,}77‘
Cip
Ciy Cip
—C n" —C
77_T Cln
Con
Cop
Cip Cip
) —C2 n_r
—H n'

an

!
v

v

Cln

Cln
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while,

o’
Coo —Ciy
o’
Cio
—Cipg Clo
C i
21:[]2(0',‘:10@25) - _r
o —Cip
Coo
Coo
_Cln Cio
-r
5 g
—r
is completely copositive when;
> 2
C16C26 = Cln
Clg0 | > cfn.
Hence wﬂ701,02 = wl(mqn,@n) + 2/}2(0,61070%) with,
Pln —C121T2 + cln:@fl 0 7#1‘1(33
—C1T2T1 + Clnxl‘fZ PQTI —02x2i3 + Clnxgi'z 0
wl(mcm,cn) = _ _
0 —C2X3T2 + ClpT2T3 Pg 0
—1T3T1 0 P/
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and

0
0
0
P

N
18
g w
™
o = e
i
Q
f
— el
1S S
g wa g
N
o
s F
O Q
f _
N
I3
g
ML
T e o
T
(\
|
"¢
sl
9
b
3
Q.
S
N
=

Therefore v, c,) is decomposable.

9]
or—
m —ho Yo
o _ O O OO0 O O oo ©oO 9o 9§
~+=
S
m o< o)
— o o o ol o | o oo o g ©
o
<
(@) O O O oO|lo o o oOoO|lo s o o
[<b]
z OO O O Ol O O Oflmr o o o
-~
= o O O ol o O .o o o o
N o)
I o O O ol O 4 9ol o o o
~
ool o ool
o _ o O OO0 N © oo o | o
=
= O O O Ol O ©o o|lo o o o
o<t
ol O O O MY O O O oo o o o
—ho
o o § o|lo o o o|lo o o o
O mr O Ol o O o oo o o o
o) aelhsy — o
N © o oo | o oo o o |

o
oI

—ho

Example 4.25. The linear map U
)
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06

The Choi matrix C'd,(l 1) is a positive semidefinite matrix with eigenvalues
52

{26.0702, 25.1402, 25., 25., 24.8598, 23.9298, 0.75, 0.75,0.75,0.75,0.75,0.75 }.

The linear map ¢(%,g,%) when r = 2 is decomposable to;
9 00 o0l0 -3 0 0|0 0 0 -% 6 0 0 00 0 0O 0[O0 0O 0 O
0 + 00X 0 0o0[0O0 0 O 0O 3 0 0/-% 0 0 0f0 0 0 O
0 09 0[0 0 0O0(0 0 0 O 0 0 16 0/ 0 0 0 0[O0 0 0 O
0 00 0 0 0 oO0f0 0 0 O o 0o o 2f0o 0o 0 0/0 0O 0 O
0 +0o0/f 0 0oO0f0 0 0 O o -+ o of4% 0 0 0/0 0 0 O
Corr s 1= -3 00 0[0 9 0 0[O0 0 =2 0 d Oy = 0o 0 0 00 16 0 0/0 0 0 O
s 0 000/0 0 90021 0 o0 M) 0O 0 0 0[0 0 16 0[0 -1 0 o0
0 00 O0/0 O 0 /0 0 0 O 0o 0 0 00 O O /0 0 0 O
0 00 0/0 O 0Ol 0 0 o 00 0 0[O0 O O O3 0 0 0
0 00 0/0 0 L o0oj0o X 0 o 0o 0 0 o0f0 0 - o0oj0o %I 0 0
0 00 O0[0 -2 0 0[0 0 9 0 0 0 0 0,0 O O 0[O0 0 16 0
-1 00 0/0 0 0 0|0 0 0 9 0 0 0 0/0 0 O O[O0 O 0 16

The Choi matrices wa |1 and C%(l | 1, Are positive semidefinite matrix with eigenvalues,
344 4°2°2

{10.0702,9.14016, 9.00714, 9., 8.85984, 7.92979, 0.5, 0.25, 0.25, 0.25, 0.242863, 0.} and

{16.004, 16., 16., 16., 16., 16.,0.75,0.5, 0.5, 0.5, 0.495969, 0.25} respectively. Thus, Y

133
5'4°4

) is decomposable.




Decomposability of linear maps v, ¢, c.c;)
Proposition 4.26. The linear map Y (u.c, cs,c5) 5 decomposable.
Proof. Let n™"+0"" = pu~" and ¢;+cie = ¢; fori = 1,2, 3. Consider the decomposition

Cw(u,cpﬂz«,cg) - Cz/}l(n,qnyezn,csn) + 01/)2(07(:10762(7’[:30')

By direct calculation of minors, the Choi matrix (4.5.4) is positive semidefinite when;

Vv

C3n Cip-

-

Ui

IV

Cip-

—r 2
Con > Cop-

while, Choi matrix (4.5.5) is positive semidefinite when;

C16C30 = cfn.
C16C30 Z C%ﬁ'
Cle0 > ci?.
Con0 > cgn.
Coo 2 0277-
Hence ¢(M7 €1, C2; 63) = O¢1(n,c1n,c2n,c3,,) + C’d}Z(O’aClo—»CQd!CBU) ’ -
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G6

€3n)
1C2n
Brimery

—p
—Cy
—C1 : _CS
Cin
n C3np _02 czn
C2p )
1n
Cip |
Cln g
Ui ‘
—c3
C3np g
n
Cing Cop Cln
an
—C1 | |
n 3
n
C3n
Cin an
CQU
Con —Co | |
! —r
: n
; Cin
—Co
Cap -
—c3
"

(4.5.4)



€6

a )
€30

Cq/ (o,¢15:¢20

Po

C30

C2o

Clo

—cCiy

—Cap

_Cln

Clo

C3o0

C2o

_cln

—Cap

—Cay

—Ciy

C20

Clo

C3o0

_Cln

—Cay

—C1y

C3o0

C20

Clo

(4.5.5)



4.5.2 Stgrmer’s decomposability criteria

A positive a map from M, to M,, is decomposable if for every natural number k,
there exist block matrix [X;;] € Mg(M,(C))*, such that both [X;] and [X};] are
completely positive in My (M,,(C))*. If the matrix [¢([X;;])] is in Mg(M,,)",then
there are linear maps 11, 9, such that 1, is completely positive and 15 is completely
copositive, with ¢ = 11 + 1y ([92], Theorem 1.1). We observe that [X;;] is a block
matrix with several entries. In addition, existence of one such matrix is enough to

show decomposability. For these two reasons we proceed to prove by example that the

maps U(ue.), Viper,eo) AN U(yc; en.05) are decomposable.

Theorem 4.27. The positive map 1, ,) s decomposable.

Proof. Let [x;;] in Ma(M;3(C)) be the matrix

Since the eigenvalues are {0,4,4,4}. We know that both [X;;] and [z;;] belong to
Mo(M,(C))F.

27" + 4y . . . . —2/
4/,L_T + 2¢y

[Wpen ([5])] = Gy

b

6p

2(p™" + 1)

—2u : : : . A" + 1)
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in My(M3(C)). By computation, of the minor we have that

2u" +4c -2
: ! : = A(p "+ e)2uT" 4 dey) — 4
=2 ApT"+ )

= 402u7* — p?) + 24e " + 16¢3.

> 0.

Therefore [, ) (2i;)] is positive. Thus the map 1, .,) is decomposable. O]

Proposition 4.28. Let 1,.c, ) be a positive map. Then Y., c,) @5 decomposable.

Proof. Let
2 2 2
4
1

1. 1

[ X1 2 2 2
4
1 4
1

2 2 2

be a matrix in M3(M3). Since the eigenvalues are {6,4,4,4,1,1,1,0,0}. We can ob-
serve that both [X;;] and [x;;] belong to M4(M;3(C))*.
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The block matrix

[(pcr en) ([Xis])] =

207"+ w —2u —2u
4p=" 4+
etk
T
-2 20" 4w —2u
4u=" 4+ p
Twor
W
—2u Tw"
4"+
20" 4w
—2u Wtk
(4.5.6)

Where w = ¢1 + 4¢o, 8 = 2¢1 + ¢2 and k = 4c¢q + 2c.




The positive definiteness of [{)(,.¢, c,)(4;)] is observed from the

20" +w —2u 0 —2u

-2 20"+ w =2 0
S 3 = T (2 + w2+ /) — 1640 > 0,

0 —2p Tw" 0
—2u 0 0 pw'"+k
20" +w —24

and
20"+ w —2u 0
—2u  2u 4w —2u | = AT = 9p®) + Aw(TeT = i)+ TuTTw > 0.
0 —2u T
Therefore the map v, ,) is decomposable. O

Proposition 4.29. Let Y ,.c, cy.c5) be a positive map. Then Y, ¢, cy.cy) 18 decomposable.
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Proof. Let

2 3
1 1
[Xis] = € My(My)
1
1
% 2
self-adjoint matrix. It is clear that [X;| = [z;;] is positive with eigenvalues

{4.34208,4.,4.,4.,4.,2.07531,1.,1.,1.,1.,1.,1., 1., 1., 1., 0.582611}.
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By computation, the block matrix, [t)(4,c; c0.e5) ([Xi5])] =

A —c1 —c2 —gH
—c1 A . —c2 —c3
S .
. II .
II . .
. A .
—ca —ca A .
(S
8u~ "
8u~"
8u~"
—c3 8u~"
:
A=2u""4+0 where §=c;+ cy+ 4cs.
©=4u"+v where ~v=2c; + cy+ cs.
M=p"+¢& where & =4c;+ 2¢5 + c3.
A=p"+x where x=c;+4c+ cs.

The positive definiteness of [V, ¢, cs.c5)(%45)] is observed from;

20"+ 6 —
—c1 20"+ 6
—Co —cy
0 —cC3
—%M 0

¢
¢
207" 49
0
0

99
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0
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81t
0

(@] S =

207"+ 06




whose determinant is

—r —r 1 —r —r 1
ST (2 4 0) = eiu® = ST (2uT) = e

> 0
The determinant of the minor
2,[J,_T + 0 —C1 —Ca 0
—C1 Q,M_T + 0 —C9 —C3
—C9 —Co 2/JJ_T + ) 0
0 —c3 0 Su~"

as

82" +0)° — (8u (2" +0) — 5207 +6)%)

> 8uT(2pTT)? — [8cppnT — 3(2u)]

= 32U —4ck -

> 0.
207" 49 —c1 —Co
—C1 207"+ 0 —C = (267" +0)[(2p" 4+ 6)* — 265 — ] — 2¢3e1 > 0
—Cy —Cy 20"+ 0
and
20"+ 06 —c
: Col=@ur+e2—>o.
—c1 27"+ 6

Therefore the map ¥(,¢; cy.c;) 18 decomposable.
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4.6 Decomposability of linear map from M;3(C) to
Ms(M;(C))

Let A, B be C*-algebras, and ¢ : M,,(A)T — M,,(B)" be a positive map. Define
Un : Mg @ My (A) — My, @ My (B) by ¢, =T, @ ¢

IfA= [aij] € Mn(A), B = [bl]] € Mn<B), we define A@B = [aij®bij] € Mn(A®B>

Proposition 4.30. Let A € M, (A)*, B € M,(B)* and A® B € M,(A® B)*.
Then ¢ : My (A)Y — M., (B)* is completely positive.

Proof. Suppose [a;;] € M, (A)T for 4,5 = 1,...,n and [[b;]]se € Mp(M,(B))" for
1,7 = 1,...,k. Let T), = 1 be a matrix unit in Mj. Then by Choi’s definition of
complete positivity;

n

[Y(Aiy)] = Z[aij]®¢([aij])

4,j=1

= D) [Talay] @ [[biy]]s

ij=1st=1

= Z Z [Traij]se @ [[bij]]se

ij=1s,t=1

= D ) laglls ® [[bi]]s

ij=1s,t=1

0

Y

]

Let X € M3(C). Let 0 < p < 1, ¢1,¢5 > 0 and r € N. Then we define the family

of positive maps 1) as follows:

(P(,u,ch@) : MS(C)+ — MQ(M2)C)+-
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P —C1T1 2 0 —UT1T3
¥ —C1T9T1 P2 —C9ToT3 0 ’ (461)
0 —nggi’g P3 0
—,LLl’g.fl 0 0 P4
where

P1 = ,u_r(oq + 01042,[[ + CQOég,U,T)

Py, = p(ag+ crazp” + coaqp”)

P3 = /[T(ozl + Qo + 063)

Py = p(az+conp” + cooap”)

4.6.1 Complete (co)positivity of @, ., .,

The structure of the Choi matrix Cp,, = € Ms3(Ma(Myz)) is visualized as a block

matrix whose entries are 2 x 2 matrices within the 6 x 6 matrix.

Proposition 4.31. Let ¢, ) a positive map. The following are equivalent:

(i) e ,co) @5 completely positive,
(1) P(ucr,e0) 15 2-positive and,

(iii) pu=" > 2 + 3.

Proof. (ii) = (iii).
Assume @, ., ,) is 2-positive. Consider P € Mg(My(M4(C)))
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where a; = (1,0,0,0,0,1,1,1)7, we have that

P = [aia;] =

in M3(Msy ® My), where zeros are replaced by dots.

Iy ® (I)(M,CLCQ)(X) -

in My(Mjy ® May) is positive semidefinite. Therefore,

By calculation of minors, p~

1 —c; O
—cp pt —e
0 co p"
—un 0 0
"> ¢ and p

1 1

1 1

1 1
wr —C —p

(&)

L
C1
(&1
—C pot| —co
—Co | "

—p o
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(4.6.3)

(4.6.4)

> 2 + 3 are necessary conditions for



2-positivity of D¢, c,)-

The Choi matrix is

pr —C —H
Co
ILL—T
C1
(&1
- . . 7 S
Cq)(lhchcz) = ., (465)
L
Ca
Co
(&1
—C2 . . . . u‘r
—p pr

in M3z(Ms ® My).

Recall that complete positivity of ®(,., ) is equivalent to positive definiteness [15]
of Cs,, ., Since (iii) is satisfied, the inequality (4.6.4) holds, and consequently
, is positive definite. Hence, complete positivity of ¢, ¢,) follows.

O(P(u,cvaz

It follows from Proposition 4.30 that 2-positivity of ®(, ., .,) implies complete positiv-

ity. O

The Partial Positive transposition is operated with respect to the blocks M, as

the entry elements of the matrix Mz(My). This leads to the Choi matrix C}

(m,e1,e2)

M3(My) with the structure given in the next proposition.
Proposition 4.32. Let ¢ (., .c,) be a positive map. Then following conditions are
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equivalent:

(i) P(ucr,e0) 15 completely copositive,

(1) Pper ) 5 2-copositive and,

(iii) cypu™" > 3

Proof. (ii) = (iii).

Assume @, ., .,) is 2-copositive. Consider P as in Proposition 4.15, we have that

PF = [aiaj]r =

in My(Msy ® Ms). Therefore,

To ® (I)(,u,cl,cg)(P) =

1
1
1
1
11
11
pr —C1
Co
W —
C1
c1 —Cy
—c .| wr
u
—C2 o
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in My(Ms® Msy) is positive semidefinite with the minors positive when conditions in
(7i7) holds.

The choi matrix,

H —C1
2
w" —p
C1
C1
r _ —C1 . . . LoopT"
P(u,eq,e2) 'u_r
C2 —C2
—C2 C2
—H €1
p"
M—T‘
(4.6.8)
in M3(My ® Ms). Since (iii) is satisfied, by calculation of the minor, C’g(# :
,€1,C2

positive semidefinite when =" > ¢; holds. Hence, complete copositivity follows.
(i) = (it) follows from Proposition 4.30 that 2-positivity of ®(,, c,) implies complete

positivity. O

4.6.2 Decomposability of

H,C1 7C2>

Proposition 4.33. The linear map @, ., ,) i decomposable.

Proof. Let @, 4, ,4,) a 2-positive map and @, 3, 5,) & 2-copositive map as in Proposi-
tion 4.15 and Proposition 4.32 respectively. Considering the matrix [®(, , ) (X)] €
Ms3(Ms(M3(C))). Since there exist 7, € (0,1) such that n7" + & = p=". Then

Cp, . 1is the matrix
(k,e1,¢2)
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L0T

nT+ET —(a1 +b1) —&p
(az + b2)
N T —1—-e)u
(a1 +b1)
(a1 +b1)
—(a1 +b1) nT+ET —(az + b2)
nTH+ET
(az + b2)
(az + b2)
—(1—&)u (a1 +b1).
—(az +b2) nT 4T
—el pT AT

in M3(My(My)C). The matrix given by the sum of the Choi matrices of completely positive map




Pln —a1T1T2 0 —E,uf['li‘g
—Qa1T2T1 P277 —agl'gfg 0
®(n7a17a2)
0 —a2I3Zf2 P:? 0
—EUT3T, 0 0 P/
and completely copositive
Pf —blllgi'l 0 —(1 — €)M$1f3
—bll'l.f'g sz 0 0
D e b1 bo) ¢
0 0 | P 0
—(1 — &) pasy 0 0 Pt

D@ (,1,c1,c0) 1s completely positive when ¢ = 0 while ®(, ., .,) is completely copositive when
qg=1.
By Proposition 4.15 and Proposition 4.32, ®(,, ., ,) is positive semidefinite. ]

Note that the decomposition of these maps is not unique.

4.7 Merging of Completely positive maps

4.7.1 Decomposability of ¥

M701702)

Let X € M3(C) and 0 < u < 1, ¢1,¢o > 0 and r € N. Then we define the positive
maps ¥ as follows:

\IJ(M,ChCz) : MS((C) — M4(C)
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2P1 —C1 (Zli’g + l’gfl) 0 7M(I1i’4 + l’4j1)

—c1(zaT1 + 217 2P —co(x9T3 + 3T 0
X 1(z2Zq 1Z2) 2 2(22Z3 3T2) @r1)
0 —03(:54@2 -+ 1’2534) 2P; 0
—/J(l'4.’f1 + $1f4) 0 0 2P,
where

T

Po= |z1| 4 er]@a|p” + co|ws|p”)

Py = p (o] + |22| + [23])

r

o

Py = " (Jwo| + erlas|p” + calaa|p”)
n
p(

P, = |z3| 4 c1]ar | + co|wa|p”)

Proposition 4.34. The linear map V(, ., c,) is positive provided the conditions in

Lemma 4.3 holds.

Proof. Let bj; = 2;7; + x;7;. Then ¥, ., .,y reduce to

2P1 —Clblg 0 _,Ub14
—Clb21 2P2 —Cgbgg 0
\Il(thlyCQ)(X) =
—Cgbgl —02b32 2P3 0
—Mb41 0 0 2P4
The proof is the same as in Proposition 4.4. [

Proposition 4.35. The linear map VU, c, ¢,) 15 2-positive(2-copositive).

Proof. Let W(, ., .,) be positive. We have that
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I, ® \Ij(u,chw)(X)

2u" . . . . —c1  —Cy  —
202 . . —C1
2u~"
) . . 2c1 | — . . .
- LA . (4.7.2)
) —C . —u | 2c .
—C . . . . 207" —2c
—Co . . . . —2co 2u7"
— . . . . . : 2u~"

By computation of the principal minors, the matrix is positive whenever the inequali-

ties

/JL_T > 1, M—T > C2, € Z 1% and Co 2 C1

holds. Thus W,.c, ) is 2-positive,
O

Proposition 4.36. The linear map W (,., ) is completely positive(completely coposi-

tive).

Proof. The computation of the Choi matrix of the linear map ¥, ., ,) gives C\p(#%cg)
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as

2u™" —C —H
2¢y . . —C1
2u~"
2¢q —H
—cy ) . 2cq
—c 2u~" —C
2u" —Co
2co
— [ 2¢cy
—C 2cy.
—Co 2u~"
.y 2"
2¢y 0 0 —a 0 0 0
0 2" 0 0 0 0 0
aB-C"C = 2u7" 0 0 2¢ 0 0 - 0 0
—C1 0 0 2c1 0 0 0
0 0 0 0 2u~" —C1 —C1
deap™" 0 0 —2c1pu”" 0
0 4~ 0 0 0
= 0 0 deip™" 0 0
—2c1pu”" 0 0 deip™" 0
0 0 0 0 dep™" — C%

The matrix is positive when 2u~" > ¢; and 4cy > ¢;.

111




2co 0 0 0 0 0
0 2 O 0 0 0
dU—-F'F = 2" 0 0 23 O 0 —| —e
0 0 0 2u" 0 0
0O 0 O 0 2u" 0
deap™" 0 0 0 0
0 degp™" 0 0 0
= 0 0 deip™" —c3 0 0
0 0 0 A= 0
0 0 0 0 4p=2r
dU > 0 is positive when 4 ™" > c3.
2ca 0 0 0 0 0
0 2¢c 0 0 0 0
aU =YY = 207" 0 0 2 0 0 -1 0
0 0 0 2u™" 0 0
0 0 0 0 2u~" —
desp™ 0 0 0 0
0 deop™" 0 0 0
= 0 0 deip™" 0 0
0 0 0 4u 0
0 0 0 0 dp¥ -2
is positive.
2¢O 0 0 0
0 2¢ O 0 0
aU—2"2 = 20" 0 0 2, 0 0
0 0 0 2u" 0
0 0 0 0 2u"
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is positive.

2 0 0 0 0 0 0 000
0 25 0 0 0 0 0 000
U-TB'T* 0 0 2 O 0 -1 0o = 000
0 0 0 2u7" 0 0 0 000
0O 0 0 0 2u 0 0 000
2 0 0 —¢ 0 o0 0 0 o0
0 24 0 0 0 00 —p 00
x| 0 0 245 0 0 00 0 00
4 0 0 2 0 00 0 00
o 0 0 0 2u" 00 0 00
2 0 0 0 0
0 2, 0 0 0
= 0 £ 2, 0 0
0 0 0 24" 0
0 0 0 0 2ur
is positive. ]

Proposition 4.37. The linear map ¥, ., ) 4 decomposable.

Proof. From Proposition 4.35 W(, ., c,) is 2-positive(2-copositive)and Proposition 4.36,

complete positivity is equivalent to complete copositivity. Observe that, C‘I’w,cl,@) is
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the sum of

(4.7.3)
(4.7.4)

ol ©o o o oflo|loc o ©
3 =
e OOOOOOOO_M
ol o o o oflo|loc o o©
o =
o | o o o Pllo|lo o o I o
I 3 ~
000000%0001
o | o o o of||lo|loc o § o o
= o
ol o © o ofoclo § o o o Cle @ e efele o @
o | o © o oflo| & o o o o ol © o o oo & o o
. D g
o| o OOO,NOOOOO OOOOOO_MOO_
— ~ ] “
©l o o o lLLj|lolo o o ¢ o o|lo o o o I|lolo o o
, 3 | 3
—
o | o o & oflojlo o o o o O%OOQOOOOO
o | o S o ool o o o o 2
000@0000,0
o | o ©O © oOoflocojlo o o o o
~
00,#0000000
o | & © o of|lo|loc o o o o
—
~ - = OQOO%OOOOO
= 00600000_
3 I
=~
|l ©o o o o|lo|lo o o
3
I
B
5 I
< —~
2 5
N -
&
=

and

Therefore, W, ¢, c,) is decomposable with 11, ¢, ¢,) 2-positive and 1g(,.¢, ¢,) 2-copositive.
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4.7.2 Decomposability of ¥

Let X € M3(C)and 0 < <1, ¢1,¢0 > 0 and r € N. Then we define the family of positive maps ¥ as follows:

2P,
—c1 (29T + 2172)
—co(x3%1 + 117T3)
0

— (4T + 1174)

M7CI7C27CB)

\IJ(MCLC%CS) : M4(C) — Mg,(@)

—c1 (21T + 2971)
2P,
—Co(23T9 + 12T3)
—c3(14Ty + ToTy)

0

—Cg(l’lfg +.’133i’1) 0

—Cg(l’gﬂ?y, + .CEgQ?Q) —63(332534 + $4£f2)

2P —63($3§74 + 1’4[f'3)
—Cg(l‘4ii‘3 + I3f4> 2P4
0 0

— (1% 4 + T477)
0
0
0
2P




where

Pro= p7 (o] + erlwo|p” + cofws|p” + cslzalp)
Py = p(za] + arfzs|p” + [zafcap” + |21 |esp”)
Py = p7(lzs| + erlaa|p” + [w2|eop” + |s|esp”)
Pyo= p7 (|| + |zo| + |zs| + [4])

Py = p(|lza] + arfz|p" + colwa|pn” + cslaa|p”)

Proposition 4.38. The linear map V(,.c, c,cy) @8 positive provided the conditions in

Lemma. 4.5 holds.

Proof. Let b;; = x;%; + x;&; Then the map described in (4.7.5) reduce to

2P —cibip —cobio 0 —ftb14
—c1byy 2P —Cobaz  —c3bay 0
U(X)=| —caby1 —cobsz 2P —c3by 0O
0 —c3byy —c3bys 2P, 0
— by 0 0 0 2P
The proof follows by the same method as in Proposition. 4.6. O

Now we find the conditions for 2-positivity and 2-copositivity of the map W, ¢, ¢y cs)-

Proposition 4.39. The linear map V., cy.c5) 15 2-positive(2-copositive).

Proof. Let W, ¢, ;) be positive. We have that,
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1.2 ® \Ij(u,c1702,63) (X)

2u~" -1 —C . —
2c3 . . 0
2¢o . .| —c
2u™"
201 | —p
- —Cc1 —Co . —u | 2cq
—C . . . . . 2u™"  —2cy —2c3
—Co . . . . . —2co 27" —2c3
—2c3 —2c3 2u"
— . : . : . . . . 2u~"

Since Yy,c, e0,c5) 18 2-positive, the matrix Zo @ W, ¢, c,c4)(X) is positive definite. There-

fore,

A= >cp, Au " >co pm>c3 4deg >y, ¢ > p and 4ep > co.

117



81T

Proposition 4.40. The positive map V(. ¢, c,.c5) 5 completely positive(completely copositive).

Proof. The computation of the Choi matrix of the linear map W(,,¢, c,c;) gives the Choi matrix, Cy,, . . as (4.7.5).

despu™" 0 0 0 —2c1pu”" 0 0 0 0
0 deop™" 0 0 0 0 0 0 0
0 0 42" 0 0 0 0 0 0
0 0 0 dep™" 0 0 0 0 0
aB—-C*"C = —2c1u7" 0 0 0 depp™" 0 0 0 0
0 0 0 0 0 4p=r — 2 0 0 0
0 0 0 0 0 0 desp™" 0 0
0 0 0 0 0 0 0 4p=2r 0
0 0 0 0 0 0 0 0 deop™"
The matrix is positive when 2u~" > ¢; and 4¢3 > ¢;.
2¢y 0 0 0 0 0 0 0 0
0 2u™" 0 0 0 0 0 —c3 0
0 0 2u=" 0 0 0 —c3 0 0
0 0 0 2¢c5 0 0 0 0 0
dU = 2¢c2| 0 0 0 0 23 O 0 0 0
0 0 0 0 0 2 0 0 0
0 0 -3 0 0 0 2¢ 0 0
0 —cs 0 0 0 0 0 2u" 0
0 0 0 0 0 0 0 0 2u~"



61T

dU > 0 is positive when 4p~" > c¢3 and 4ejpu™" > c3.

dep™" 0 0 0 0 0 0 0
0 4p=2" — c3 0 0 0 0 0 —2csu™"
0 0 4p=2r 0 0 0 —2cgp™" 0
0 0 0 desp™" 0 0 0 0
alU =YY = 0 0 0 0 desp™" 0 0 0
0 0 0 0 0 2cap™" 0 0
0 0 —2cap™" 0 0 0 dep™" 0
0 —2cgpu™" 0 0 0 0 0 4p=r
0 —Copt 0 0 0 0 0 0 4p=3r

is positive provided the inequalities, 247" > ¢y, 4p=2" > e+ c§ and 4p~%" > 2 + p? are satisfied.

deyp" 0 0 0 0 0 0 0 0

0 4p 2 — 2 0 0 0 0 0 —2c3p" 0

0 0 Ap2r 0 0 0  —2csu" 0 0

0 0 0 desp™ 0 0 0 0 0

alU —Z7*7 = 0 0 0 0  desp™ 0 0 0 0
0 0 0 0 0 24" 0 0 0

0 0 —2c3u™" 0 0 0 deyp" 0 0

0 —2c3pu”" 0 0 0 0 0 4p2r 0

0 0 0 0 0 0 0 0 Ap=2r




is positive satisfying the inequalities, 2,7 > ¢y and 4u=% > c2+c2 -
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SO O O oo o o

o o OO [en]

QM*T—%C

—c3
C2H
cy +03
0
0
c1+teg
0

2c1—

(c2+e3p™)
0
0

1
2

0 2c2—

©
|

3
N

The minors of U — TB~'T* are nonnegative when , 2" > ¢5, ¢; > ¢, and deju™™ > c2. holds.

are equal.

qj(#ﬁp%,ﬂg)

and CY
c3)

,€1,€2,

Remark 4.41. It is clear from (4.7.5) that Cy,,



(4.7.5)

—c3

201

—c3

201

2u™"

2p~"

0

263

—c1

2p~"

—C1

—Co
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Proposition 4.42. The linear map W, ¢, c,.c) 5 decomposable.

Proof. From Proposition. 4.40 W(, ., ¢, c,) is 2-positive(2-copositive). Since the Choi
matrix of complete positivity is equal to the Choi matrix of complete copositivity, we

observe that from Proposition 4.17 and Proposition 4.18,

_ I
C\Ij(#sclvczv%) - Ow(quLCz»C?,) + Cw(u,cl :

1€2,¢3)
Therefore, W, ¢, ¢, ;) i decomposable. O

Proposition 4.43. For every linear map 1 in B(M,,(C), M,,,(C)), if the matriz trans-

pose of [Y(xi;)] is equal to [1(z;:)], then ¢ decomposable.

Proof. Assume that M,, C B(S) for some Hilbert space S. Let
z 0
S = { .| € Mo(B(S)) : z € M, }, (4.7.6)

where T is the transposition map with respect to some orthonormal basis in S. Then
S is a subspace of My(B(S)) with the identity. One can observe that both [z;;] and
[z;;] are both in Mj(M,,)" if and only if

ri1 0 T 0
0 g 1 | 0 iy 1
€ Mi(S)".
i T 0O ] [ Tpe O ]
0 xi | |0 xi |

Therefore 1 is k-positive. Since [1)(z;;)] = [¢(xj;)] € Mg(A)*. By ([92], Theorem 1.)

1 is decomposable. []
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Chapter 5

CONCLUSION AND
RECOMMENDATIONS

5.1 Introduction

In this chapter we give a summary of main results in this thesis. In chapter one,
we gave background information, basic concepts and definitions which were essential
in the study. In chapter two, we looked at the related literature in line with the
stated objectives in Section 1.4. In the Third chapters we have reviewed the necessary
techniques that have been employed to achieve the stated objectives. In chapter four,
we gave the results obtained in the discussions. Here we give conclusions and make

recommendations based on our objective of study and the results obtained.

5.2 Conclusion

The first objective was to construct positive maps. We have employed the use of vectors
r = xy1,...,x; for © = 2,...,n and their conjugate transpose to generate positive
semidefinite matrices. The linear map (¢, ., ,) constructed in (4.2.2) maps that

take the positive semidefinite matrices M,, to the space M,,(M,, 1) with entries from
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the field of complex numbers. Canonical reshuffle of the linear map v, ,) allowed
us to define a special map in (4.6.1) that takes positive semidefinite matrices M3 to
the space M3(My) with entries from the field of 2 x 2 matrices. The maps in (4.7.1)

and (4.7.5) were constructed by merging of two positive maps.

In objective two, the concept of positive semidefinite polynomials was applied to show
positivity of linear maps. It has been shown that the family of linear maps ¥ ,.c,,...c,_1)

and W, . y from M, to M, ;11,n = 2,3,4 is positive preserving for all positive

+Cn—1
semidefinite matrices X in M,,(C). The range of values for which the maps are positive
have been established for the parameters u,cq,...,c,_1. We also observed that from
Proposition 4.2, Proposition 4.4, and Proposition 4.6 that the map 1, is

--1Cn71)

positive for all ¢, € [0, 1] whenever 0 < u < 1 for n =2,3,4 for all r € R™.

The third objective was to characterize the structure of Choi matrix for 2-positive

maps that are similar to the Choi matrices of the maps .., . y- The Choi matrix

csCn—1

(4.4.3)canonical shuffling can be visualized i My(M,,51). This shows that M, ®

M 41 is isomorphic to the block matrices M, (M ,41)).

Mn X M(n+1) = Mn(M(nJrl)) = M2(Mm+1)~

The conditions given in the Choi matrix 4.4.3 which also implies that the linear maps
Yier,..en_r) are completely positive whenever the conditions () through to (v) are nec-

essary. We observe that, if a positive map (¢, ... ¢,_,) 15 2—positive, then equivalently

77777

it is completely positive for all r € R for n < 4.

Indeed, in the final objective of the thesis we considered decomposition of the lin-
ear maps Yuc,..cn_1)s Pluci,en), and the merger maps W, . ) and Wi, . e, cy). This
was demonstrated in Proposition 4.20, Proposition 4.24, Proposition 4.26, Proposition
4.33, Proposition 4.37 and Proposition 4.42 respectively. This gives an affirmative re-

sult in [105], Theorem 3.1.6, that if ¢ is a positive linear map from M,,(C) to M,,(C),
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then the map is decomposable provided nm < 6. It is important to note that the de-
composition of the map 1, ) is not unique. This is one of the reasons decomposition
of positive maps even in low dimensions is such complicated to be expressed with a
unique algorithm. We have generalized them as the sum of the Choi matrices of the
2-positive and 2-copositive maps. However, we have also used Stgrmer decomposition
criteria to show decomposability. It should be noted that this criteria does not give us
the conditions but rather the existence of a decomposable map. A special decomposi-
tion technique is shown for the map W, , ,) form Mj to My(My) as in Proposition
4.33 where the partial transposition is operated with respect to the 2 x 2 matrices as
the entry elements as opposed to the conventional way where the elements are complex
numbers. It is important to note that the decomposition of these linear maps are not

unique.

5.3 Recommendations

From this study, although several properties of linear positive maps have been inves-
tigated, it is evident that it remains an interesting and rich area of research in pure
mathematics. There has been a vast growth on both the mathematical and physical
literature on indecomposable positive maps. However, the questions of decompos-
ability of positive seems to have been ignored. The motivation is that this problem
is twofold: on one hand, the mathematical structure of positive maps with respect
the block-matrix element transpose will be useful to witness the presence of entangle-
ment, on the other, one may hope that they could shed some light on the process of

entanglement generation by the application of such maps.

For two positive operators P and @ acting on C* @ C™, W is a decomposable entan-
glement witness if and only if there exist a,b > 0 such that W = aP + bQ", where

I' is Partial Transposition. Otherwise, an entanglement witness is indecomposable if
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and only if it detects Partial positive entangled states. It is clear that if W is a Choi
matrix of a positive map 1». Then P and Q' are Choi matrices of completely positive,
1y and completely copositive, 102 maps respectively. The Example 4.19 gives another
special case where the linear map is 2-positive and its Choi matrix is both completely
positive and completely copositive as in Equation. Based on this we ask, if there
exist 2-positive maps from My, (C) to My, (C) that is decomposable if and only if
Cy = Cy,. Tt is our belief that generally this should hold even when the dimensions of

the underlying spaces are large enough.

We have shown the existence of a 2-decomposable map from Mj3(C) to My(C). In
closing we ask; For n(n + 1) > 12, does there exist 2-positive map from M,,(C) to
M, +1(C) that is indecomposable? We end by the question;

Question 5.1. If U is a 2-decomposable and there are 1y a 2-positive map and s a
2-copositive map, ¥y, 09 : A — B(H) such that ¥ = 1y + 1)y, does there ezist a linear

map Yy that is 2-decomposable?
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Appendix A

Choi matrices positive map ID(M C1,09,C3)

A.1 Choi matrix for complete positivity map w(u,q,@,cza)

m={{\ [Mu]~(-n),0,0,0,0,0,-\[Alpha],0,0,0,0,0,-\ [Kappal ,0,0,0,0,0,0,-\ [Mul},
{0,\[Betal,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,\ [Kappal ,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0},{0,0,0,\[Mul~(-n),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,\[Alpha],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,\[Alphal,0,0,
0,0,0,0,0,0,0,0,0,0,0,0},{-\[Alphal,0,0,0,0,0,\[Mul~(-n),0,0,0,0,0,-\[Kappal,
0,0,0,0,0,-\[Beta],0},{0,0,0,0,0,0,0,\[Betal],0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,\[Mu]~(-n),0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,
\ [Kappa] ,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,\[Kappal ,0,0,0,0,0,0,
0,0,0%},{0,0,0,0,0,0,0,0,0,0,0,\[Alphal ,0,0,0,0,0,0,0,0},
{-\[Kappal,0,0,0,0,0,-\ [Kappal ,0,0,0,0,0,\[Mu]~(-n),0,0,0,0,0,-\[Betal ,0},
{o0,0,0,0,0,0,0,0,0,0,0,0,0,\[Mu]~(-n),0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,
0,0,0,\[Beta],0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,\[Betal,0,0,0,0},
{o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,\ [Kappal ,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,\[Alpha],0,0},{0,0,0,0,0,0,-\[Betal ,0,0,0,0,0,-\[Betal,0,0,0,0,
0,\[Mul~(-n),03},{-\[Mu],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,\[Mul~(-n)}}

A.2 Choi matrix of completely copositive map ¢(FM e1.09.03)

m={{\[Mu]~(-n),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
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{0,\[Betal ,0,0,0,-\[Alphal ,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,\ [Kappa]l ,0,0,0,0,0,0,0,-\[Kappal ,0,0,0,0,0,0,0,0,03},
{0,0,0,\[Mu]~(-n),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,\[Alphal,0,0,0,0,0,0,0,0,0,0,-\[Mu],0,0,0,0},
{0,-\[Alphal,0,0,0,\[Alphal,0,0,0,0,0,0,0,0,0,0,0,0,0,03},
{0,0,0,0,0,0,\[Mu]~(-n),0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,\[Betal ,0,0,0,-\[Kappal ,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,\[Mu]~(-n),0,0,0,0,0,0,0,-\[Betal ,0,0,0},
{0,0,0,0,0,0,0,0,0,\ [Kappal ,0,0,0,0,0,0,0,0,0,0},
{0,0,-\[Kappal ,0,0,0,0,0,0,0,\[Kappal ,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,-\[Kappal ,0,0,0,\[Alphal,0,0,0,0,0,0,0,03,
{0,0,0,0,0,0,0,0,0,0,0,0,\ [Mu]~(-n),0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,\[Mu]~(-n),0,0,0,-\[Betal 0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,\[Betal ,0,0,0,0,0},
{0,0,0,0,-\[Mu],0,0,0,0,0,0,0,0,0,0,\[Betal ,0,0,0,0},
{0,0,0,0,0,0,0,0,-\[Beta] ,0,0,0,0,0,0,0,\[Kappal ,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,-\[Betal ,0,0,0,\[Alphal,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,\ [Mul~(-n),0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,\[Mu]~(-n)}}
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IOIO)I

+0,0,0,0}}.
a2/3x2u3—r

(o,

R o pe 0,0,0, -(—aaBx’p’ )/ (-—a?apx’p’ F+a®p2*p®77), 0,0, 0, 0},

__aZaBKPS—r_'_aZ BZK.IJB—I

——aza/.ixzuz_‘+a2/32x2].12_‘
__a2a/3K2p3—r+a2 BZK2p3—r

,0,0,0,0,0,0,0}, {0, 0, ,
-—a2afx2pd3—ri+a2B2x2pd3—T

2 B2 T+ B2 k23T
0,0,0,0,0,0},{0,0,0, e BF B 9,0,0,0,0},
——a2 afx2p3 T+ a2 B2 k2 3T
a 2K2 3—r
{-(—aap®p*") / (-—?aBPpP T+ 2K TF), 0, 0,0, Fx®

(o,

{o,0,0,0,0,0,

__a2aBK2p2—r+a2B2K2p2—r

,0,0,0,0},
-—a2afK2pdTrra2 B2 k2 pd3 T

——azanz 2—r+a232K2 2 —r

0,0,0,0, a a

-—a2afripdr+a2p2x2pdr’ 0,0, 0}’

—a?ax?pd T a2 B2 pdTE

, 0,0}, {0,0,0,0,0,0,0,
-—a2aBK2pdrT+a2 B2 k2 pd3-r

——o2aBKk2p3r+aZ fZKZp3 T
{{0, 0, 0, 0, 0, 0, -x, 0, 0}, {0, O,

{0,
{0,

oufr= {{0, 0,

{o, 0,

{0, 0,

— 2 3—r 2 p2 3—r
,0},{0,0,0,0,0,0,0,0, — Zaﬁxp_wﬁ’cp —1}-
——a2 af k23T + o2 B2 k2 p3 %
0,0,0,0,0,0}(,0,0,0,0,0,0,0, 0},
,0,0,0,0,0,0},{0,0,0,-4,0,0,0,-8,0},
0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0}}
0, 0,0,0,0,0,0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0,

’ ’ ’ ’

0
0,0,0,0,0,0,0,0},{0,0,0
0,0,0,0,0,0,0,0},{0,0,0

’ ’ ’ ’

_O(O(BK3H}J3_I
0,0, 0,0, - —— o op o s g 0o}, {0, 0, 0, 0, 0, 0, 0, 0, 0},
2 4 .3 —r
o Bk
0, 0,0,0,0,0,0}, {0o,0,0,0,0,0, e AR ATt 0},
BU<__O(ZO(BK2UZ_I+O(282K21—12_I) /32 (—_C(ZC(ﬁKZ].lz_r-*-O(zﬁszpz_r)
0 ——oZafBKZpdTr+aZPZrIpdcr +0,0,0, ——oZafBkZpdTr+a? BZKZ 3T ’O}’
0, 0, 0,0,0,0, O}}



A4l

U-TB'T*

In[1j:= d={{8,0,0,0,0,0,0,0,0}, {0, pr(-x), 0,0,0,0,0,0, 0}, {O,0, pur(-xr), 0,0,0, -3, 0, 0},
{0,0,0,8,0,0,0,0,0}, {0,0,0,0,8,0,0,0,0},{0,0,0,0,0,x,0,0,0},
{0,0,-8,0,0,0,a,0,0}, {0,0,0,0,0,0,0, pr(-x), 0}, {0, 0,0,0,0,0,0,0, a”r(-x)}} -

{{0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0, 0,0},
{0,0,0,0,0,0, -(—aaBx®up®™™)/(-—a?aBr?p® *+a?p2x?p*~%), 0,0}, {0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0, (a?Bx*pn®"%)/(-—a?aBr?Pp® *+a?B2x*p*~%), 0, 0},
{0,0,0, (Bu(-—a?2aBx?p? T+a?p2x2p27%))/ (-—a?aBfr®2p* T+a?p2x?p®7%),0,0,0,

(,32 (__azaBK2p2—2+a2 ﬁZKZPZ—:)) / (__azaﬁxz p3—:+a2ﬁ2K2 ]JS_:), 0)’ {0, 0’ 0, 0, 0, 0, 0, 0, 0}}

outf1j= {{B, 0, 0, 0, 0, 0, 0, 0, 0}, {0, p*, 0, 0, 0, 0, 0, 0, O}, {0, O, p", 0, O, O, -B, O, 0},
_aaBKzuuz—r
——2afKkZpir+o2 K2 pdr

{0, 0, 0,0,0,x,0,0,0}, {0,0,-8,0,0,0, a- (@Bx*>75) /(-—a?aBr®p>F+a? B x2pu>"%), 0, 0},
{0, 0, 0, —(Bu (-——?aBr’p? T+a? B r?p? 7))/ (-—P aBx’pd T+ B2k pPTT), 0, 0, 0,
ufr_ (52 (—_OZZO(BKZ le_r+0(252}<21.12_r)) / (—_OlZO(BKZ u3_r+0(2B2K2 uS—r), 0}, {0, 0, 0, 0, 0, 0, 0, 0, ufr}}

{0, 0,0,8,0,0, , 0,0}, {0, 0,0,0,8 0,0,0,0},

In[3]:= MatrixForm[d]

Out[3]//MatrixForm=

B 0 0 0 00 0 0 0

0 pT 0 0 00 0 0 0

0 0 n* 0 00 -B 0 0
70(0(3'3‘H 3-r

o 0 o s 00 et = 0 0

0 0 0 0 B 0O 0 0 0

0 0 0 0 0 x 0 0 0
2 4 ,3-r

0 0 -8 0 00 a- —gpaiemar= 0 0

. —o2 K2 12 TT o2 B2 2 2 T r - 2 (—g? K2 12 TEap? B2 )2 g2 T
0 0 0 "GV,(_(I)Uagf;u3p—v+a;)/5?/j‘<;‘ly—v~) 0 0 0 B - = f_aga%ipp?ﬂmfﬁ?ﬁ)Efr) 0

0 0 0 0 0 0 nr



In[4]:=

out[4]

In[5]:=

Out[5]=

In[6]:=

Out[6]=

In[7]:=

Out[7]=

In[8]:=

Out[8]=

In[9]:=

Oout[9]=

In[10]:

Out[10]

In[11]:

Out[11]

3 3—r
—aafx
da7 = Fruw

-—a2afK2p3-r+a2 B2 k2 3T

_O(O(BKBUP3_I
—_O(ZO(BKZ uB—r + o2 BZKZ uB—r

Factor[d47]

—a K U
—a? —ap

a2 BK4 ]13 —r

-—a2 a/us}IB_r+a2f32K2].13_r

d77 =

O(2BK4 1‘13—15
7_01201/3}(2 uB—r+o(2 62K2 uB—r

Factor[d77]

o x?
—a2 - af

[3“ (—_(X2(X/3K2]12_r+a2f321(2]12_r)

ds4 =
_—aZaBKZPB—r_'_aZBZKZpB—r
/311 (—_O(2 O(BK2 u2—r+0(2 52 K2 u2—r)
—ZafBrIpd r+a? BZrZpd =
Factor[d84]
Bunp*
/32 __a2a/3K2 2—r+a2/32x2 2—r
asg < P ¢ n L)
_—a2aljx2p3—r+a2f32x2u3—r
62 (7_0(2 O(BKZ 1/12 —r Jr0(2 BZ K2 u2 —r)
——oZaBKZpdr+o2 BZRZpd
Factor[d88]
[32 pf—r
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Appendix B

Choi matrix positive map &, . . )

B.0.1 Completely copositive matrix

d = {{2\Mu]~(-r),0,0,0,0,0,-\[Alpha],0,0,0,0,0,-\[Kappal ,0,0,0,0,0,0,-\[Mul},
{0,2 \[Betal,0,0,0,-\[Alphal,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,2 \[Kappal,
0,0,0,0,0,0,0,-\[Kappa]l,0,0,0,0,0,0,0,0,0},{0,0,0,2\ [Mul~(-r),0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0},{0,0,0,0,2\[Alpha],0,0,0,0,0,0,0,0,0,0,-\[Mul,0,0,0,0},
{0,-\[Alphal,0,0,0,2\[Alphal,0,0,0,0,0,0,0,0,0,0,0,0,0,03},{-\[Alphal,0,0,
0,0,0,2\[Mu]~(-r),0,0,0,0,0,-\[Kappal ,0,0,0,0,0,-\[Betal ,0},{0,0,0,0,0,0,0,

2 \[Betal,0,0,0,-\[Kappal,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,2\[Mul~(-r),0,0,
0,0,0,0,0,-\[Betal,0,0,0},{0,0,0,0,0,0,0,0,0,2 \[Kappal,0,0,0,0,0,0,0,0,0,0%},
{0,0,-\[Kappal ,0,0,0,0,0,0,0,2\ [Kappa] ,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,

-\ [Kappal ,0,0,0,2\[Alphal,0,0,0,0,0,0,0,0},{-\[Kappal,0,0,0,0,0,-\[Kappal,0,
0,0,0,0,2\[Mul~(-r),0,0,0,0,0,-\[Beta],0},4{0,0,0,0,0,0,0,0,0,0,0,0,0,

2\ Mu]~(-r),0,0,0,-\[Beta],0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2 \[Beta],
0,0,0,0,0},{0,0,0,0,-\[Mu]l,0,0,0,0,0,0,0,0,0,0,2 \[Betal],0,0,0,0},{0,0,0,
0,0,0,0,0,-\[Betal,0,0,0,0,0,0,0,2\[Kappa]l ,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,
0,0,-\[Betal,0,0,0,2\[Alphal,0,0},{0,0,0,0,0,0,-\[Betal ,0,0,0,0,0,-\[Betal,0,
0,0,0,0,2\[Mul~(-r),0},{-\Mul,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2\[Mul ~(-r)}}
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44!

In(l6]:= b= {{28,0, 0, 0, -, O, O, O, O}, {O0,2x,0,0,0,0, O, O, O},

{0,0,2p*-r,0,0,0,0,0,0},{0,0,0,

2a, 0, 0,0,0, 0},

{-—a,0,0,0,2a,0,0,0,0},{0,0,0,0,0,2p~—r, 0,0, 0},
{0,0,0,0,0,0,28,0,0},{(0,0,0,0,0,0,0,2u*—r, 0},

{0,0,0,0,0,0,0,0, 2x}}

out[i6j= {{2p4, 0, 0, 0, -2, 0, 0, 0, 0O}, {0, 2x, O, O, O, O, O, O, O}, {O, O, 2w~ ", O, O, O, O, O, O},
{0, 0,0 2« 0,0,0,0, 0}, {—2, 0, 0,0, 2, 0, 0, 0O, O}, {O, O, O, O, O, 2u"%, 0, 0, O},
(o, 0, 0, 0, 0, 0, 28, 0, 0}, {0, O, O, O, O, O, O, 2%, O}, {O, O, O, O, O, 0, 0, 0, 2x}}

In[15]:=
In[18]:= Inverse[b]
256 % B K2 p> T
outr18]= { Iy P S e 0, 0, 0,

—64 —a? af kP’ TE 425607 BPkpdTr
-128 —a? afBx?p3~r+512a2 B2 k2 pd -’
-64 —a? af k?p?TF + 25607 B2 K2 p? T
-128 —a? afBKk?2p3~r +51202 B2 k2 pd—r '

-64 —a? Br? P> Tr 4+ 2560 B2 kPP TE
-128 —a2 aBk2pdTr + 51202 B2 k2 pd—r

128 —oa Bx2p3~r

0, 0, 0,

0,

0, 0,

0, 0, 0,

-128 —o2 a3 k2 p3Tr + 51202 B2 k2 pd—r

- +0,0,0,

128 —aa Bx?p—*

T C128 —a2aBKZpdr 451202 B2 K23

0,0, 0,0, 0},

0,0, 0,0, 0},

,0,0,0,0,0},

256 a 32 k2 pd Tr

{
{
{
{
{
{

o, 0, 0, 0,0,

, 0, 0,0},

{0, 0,0,0,0,0,

, 0,0},

{0, 0,0,0,0,0,0,

{0, 0,0,0,0,0,0,0,

-128 —o2 aBxk2p3Tr+ 51202 B2 k2 pd3—r
-64 —a? af k2P T+ 25602 B2 k2 p2Tr
-128 —o2 aBkZ2pdTr + 51202 B2 k2 pd3 T
-64 —a? ax?pPTr 425602 BREIpSTE
-128 —o? aBKZp3Tr + 5122 B2 kZp3—r
-64 —a?afkZuZTr 425602 B2 k2 pt T o}
-128 —a? af k2 pd~r+512a2 B2 k2p3—r ' !
—64 —o? afkpcTr 425602 BEkpdTr H
-128 —o2 aBKk2p3~r + 51202 B2 k2 pd3—r

,0,0,0,0},

,0,0,0,0},



!

Infi]:= ¢={{2a, 0, 0, 0O, O, O, O, O, 0}, {0,2u~(-x),0,0,0,0, 0, -8, 0}, {0,0,2u~(-x),0,0,0, -B,0,0},
{(0,0,0,28,0,0,0,0,0},{0,0,0,0,28,0,0,0,0},¢{0,0,0,0,0,2x,0,0,0},
(0,0,-B,0,0,0,2a,0,0},{0,-B8,0,0,0,0,0,2u~(-x),0},{0,0,0,0,0,0,0,0,2u"(-x)}}-
{{0, 0, 0, 0, 0, 0, 0,0, 0},{0,0,0,0,0,0, 0, 0, 0},
{(0,0,0,0,0,0,0,0,0},{0,0,0,0, -u, 0,0,0, 0},
{(0,0,0,0,0,0,0,0,0},{(0,-x,0,0,0,0,0,-3,0},{-«x,0,0,0,0,0,0,0,0},
{(0,0,0,0,0,-8,0,0,0},{0,0,0,0,0,0,0,0,0}}.
({(256 2 Bx?p® %) / (-128 —a? aBx?p3 T+ 5122 B2 K23 "%), 0,0, 0,
-(128 —aapBx®p®7F) / (-128 —a? aBx?pd T+ 51202 B2 k*p3 ), 0, 0, 0, 0},

{0, (-64 —a?aBxp® T +256a?B2kp>"F)/ (-128 —a?aBx?pd"F+512a?p%x%?p®~%), 0, 0,0,0,0,0, 0},
{0, 0, (-64—a?aBr®p?*+256a?B2x?p?"F)/ (-128 —a? aBx?p® F+512a2p%x*p3"%),0,0,0,0,0, 0},
{0, 0,0, (-64—a?Bx?p® T+256aB2K?p®"T)/ (-128 —a? aBr?pd T +512a2 B2 k?p3"%), 0, 0, 0,0, 0},
{-(128 —aaBx?p®7F) / (-128 —a? aBx?p} T+ 512a? B2 k23 "F), 0, O,
0, (256 aB2x?p®7%) / (-128 —a? aBfx®p3 T+ 512a? B2 x2p*"), 0, 0, 0, 0},
{0,0,0,0,0, (-64—a?afx®p® T+256a®B2x?p2"F)/ (-128 —a?aBx?pd T +512a%?B2x*p3 %), 0, 0, 0},
{0,0,0,0,0,0, (-64—a?ax?p® *+256a?Bx?*p® %)/ (-128 —a?aBx?pd T +512a%2B82 k% p3"%), 0, 0},
{0,0,0,0,0,0,0, (-64—a?aBx?p? *+256a?B2Kk?p?2~")/ (-128 —a? afx®p3 T +512a% B2 k23 "F), 0},
{0,0,0,0,0,0,0,0, (-64—a?aBxp® T+256a?B2kpu>"F)/ (-128 —a?aBx?p® T +512a% B2 k2 p37F)}}.
{{0,0, 0, 0, 0, 0, -x, 0, 0},¢(0,0,0,0,0,-x,0,0,0},{0,0,0,0,0,0,0,0,0},
{(0,0,0,0,0, 0,0,0,0},¢(0,0,0,0,0,0,0,0,0},{(0,0,0,-4,0,0,0, -8,0},

,0,0,0,0,0,0,0},¢(0,0,0,0,0,-8,0,0,0},{0,0,0,0,0,0,0,0,0}}

’ ’

out(1j= {{2«, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 2p°%, 0, 0, 0, 0, O, -B, 0}, {0, 0, 21", 0, O, O, -B, O, 0},

128 —aaBx3up’~*
{O, 0, 0,25, 0,0, —77 e R R e S Ll PR RTEE T 0, 0}, {0, o, 0, 0, 28, 0, 0, 0, O},

{o 0. 0. 0 0 2}<752 (-64 —0® a B k%%~ + 256 a? B? k? pu? 7r) K2 (=64 —o? afxpdTr+25602 BZkpdTr)

“128 —a2 afKkZpdr+ 51202 B2 k2 pdi-r  -128 —a?afBKZpd-r+51202 B2 k2 pd—r ' 0, 0, O}'
256 0% Bkt pdTr
; 0, =B, 0, ;2a- ; 0, 0py
{O 0, -5, 0,0, 0 “ -128 —a?2 afBxZp3"r+ 51202 B2 k2 pd3—r 0 0}

{o B, 0 B (-64 —0® a k% p® TF 425607 7 k7 p? TF) 00 0 2 e B (-64 o af K p? T+ 25608 B2 kP p? T o}
! e -128 —o2 afBk?pu3~"r+51202 B2 k2 p3—c " T T H -128 —a? afBxk?p3~r+512a2 B2 k2 p3—r !
{0, 0,0,0,0,0,0,0, 2u7}}




B2 (-64 —a?afx?Pp?Tr+256a2 B2 k2 p2TT) k2 (-64 —a? afkpdTT +256a2 B2 xpdTT)

In[l]:= c66=2x- -
-128 —a?2 afk2p3~r+512a2 B2 k2 p3-—r -128 —a2 a k2 p3"r+512a2 B2 k2 p3—r

_ B?(-64 —of aBx?pTE 2560 B2k p?TE) K2 (-64 —o? afxkpTr 425602 B2k pdTE)

out([1]= 2
ut (1] < -128 —a2 a B k2 p3Tr + 51202 B2 k23 ~r -128 —o2 a B2 p37r+ 51202 B2 k2 pdTr

In[2]:= Factor[c66]

out[2]= %u TE (=B 4 3xkpTE)
128 —aaB k3 upd~r
In[3]:= cAT= L
-128 —a2 aBxk2p37r + 512 a2 B2 k2 p3 7 r
— 3, 43"
out[3]= 128 —aa Bk’ un

-128 —a? a Bk2 p3~r + 51202 B2 k2 p3

In[4]:= Factor[c47]

256 a2 Bkt pd—r

In[5]:= c717=2a-
-128 —a2 aB k2 p3 r+512a2 B2 k2 pd3 T

256 0% Bkt pd T
-128 —a2 a BkZp3~r + 51202 B2 k2 p3

out[5]= 20—

In[6]:= Factor[c77]

B 20 (-—o®+4afB-x?)
out[6]= - o7 iaB
Bu (-64 —a? a B x? 2T + 256 a? B2 k2 p2~T)
In[7]:= c84 = -
-128 —a2 aBx2p3"r +512 a2 B2 k2 p3 —F
64 —o? 2 2—r 2 32 42 42 =T
out[7]= _Bp(-64—a‘aBk‘n +256 0 3“ k* p )

-128 —a? a Bk2p3Tr + 51202 B2 k2 p3~r
In[8]:= Factor[c84]

1 —
out[8]= —E/Suu B

B2 (-64 —a? a B x? p?~F + 256 a2 B2 k2 p? ~T)

In(9]:= c88=2u"" -
-128 —a2 aBk2p3—r + 512 a2 B2 x2 p3—r

o B (=64 —afaBx?p? TF+ 25607 B7 kP p? )
-128 —a?2 a BkZ p3~r + 51202 B2 k2 p3

out(9j= 2 u

In[10]:= Factor[c88]

1 _ _
out[10]= - — pFp " (B% u"-4p7r)
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B.1 Choi matrices of the linear map ¢(% L

B.1.1 The Choi matrix, C¢( :

N

11
572

p ={{25,0,0,0,0,-3/4,0,0,0,0,0,-1/5},{0,3/4,0,0,0,0,0,0,0,0,0,0},
{0,0,25,0,0,0,0,0,0,0,0,0},{0,0,0,3/4,0,0,0,0,0,0,0,0},
{0,0,0,0,3/4,0,0,0,0,0,0,0},{-1/2,0,0,0,0,25,0,0,0,0,-3/4,0%},
{0,0,0,0,0,0,25,0,0,0,0,0},{0,0,0,0,0,0,0,3/4,0,0,0,0%},
{0,0,0,0,0,0,0,0,3/4,0,0,0},{0,0,0,0,0,0,0,0,0,3/4,0,0},
{0,0,0,0,0,-3/4,0,0,0,0,25,0},{-1/5,0,0,0,0,0,0,0,0,0,0,25}}

= p={{25,0,0,0,0,-3/4,0,0,0,0,80, -1/5},
{0,3/4,0,0,0,0,0,0,0,0,0, 0},
{e,0,25,0,0,0,0,90,8,9,8, 0},
10,0,0,3/4,0,90,0,9,0,8,80, 0},
{0,0,0,0,3/4,0,0,0,0,9,9, 0},
{-1/2,0,0,0,0, 25,0,0, 0,0, -3/4, 0},
1e,0,0,0,0,9, 25,0,90,9,8, 0},
{0,0,0,0,0,0,0,3/4,0, 8,80, 0},
10,0,0,0,90,0,0,0,3/4,8,60, 0},
{e,0,0,0,0,0,0,0,0,3/4, 0, 0},
{e,0,0,0,0, -3/4,0,0,0,0, 25, 0},
{-1/5,0,0,0,0,0,0,0,0,0,0, 25} }

3 ; 3 ;
outlz st, 0,0,0,0, = 0,0,0,0,0, —— ', {e, 2 0,0,0,0,0,0,0,0,0,0;,

3 \
{e,e,25,0,0,0,0,0,0,0,0, 0}, 10,0, 0, i 6,0,90,0,0,0,0,0:,
( 3 \ 1 3
{e) e) a) e)Z)e) e)e) e) a) e)a*) _E)e) e) 9) e) 25) 9) e) 9, 9) _Z)e")

{6,@,0,0,0,0,25,0,80,0,0, 0},

—— = e e

3 :
9, 9, 9, 9) e) 9, 9) 1) 9, 9) e; e";

. 3 | 3 3
{e) e) a) e) 9, 9) 9, 9, ;) 9, 9, a*) 9) e; e) 9) e) e) e) a) e) ;) 9) e*)

——

3 . i -
{e, ©,0,0,0,--,0,0,0,0,25,0), {--, ©,0,0,0,0,0,0,0,0,0, 25
4 J 5 1)

miz:- N[Eigenvalues [p]]
oulzl- {25.9767, 25.1536, 25., 25., 24.8464, 24,0233, 0.75, 0.75, .75, 0.75, 0.75, 0.75)}
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B.1.2 The Choi matrix, Cy,

111
1(3'171)

p1 ={{9,0,0,0,0,-3/4,0,0,0,0,0,-1/5},{0,1/4,0,0,1/4,0,0,0,0,0,0,03},
{0,0,9,0,0,0,0,0,0,0,0,0},{0,0,0,1/4,0,0,0,0,0,0,0,0},
{0,1/4,0,0,1/4,0,0,0,0,0,0,0},{-3/4,0,0,0,0,9,0,0,0,0,-3/4,0%,
{0,0,0,0,0,0,9,0,0,1/4,0,0},{0,0,0,0,0,0,0,1/4,0,0,0,0%},
{0,0,0,0,0,0,0,0,1/4,0,0,0},{0,0,0,0,0,0,1/4,0,0,1/4,0,0%},
{0,0,0,0,0,-3/4,0,0,0,0,9,0},{-1/5,0,0,0,0,0,0,0,0,0,0,9}}

- pl = {{9,0,0,0,@,-3/4,0,0,0,0,0, -1/5)},
{¢,1/4,0,0,1/4,0,0,0,0,0,80,0},
{0,0,9,0,0,0,0,0,0,0, 0,0},
{e,e,0,1/4,0,0,0,0,8,0,80, 0},
{e,1/4,0,0,1/4,0,0,0,0,0,80,0},
{-3/4,0,0,0,0,9,0,0,0,0, -3/4, 0},
{e,e,0,0,0,0,9,0,0,1/4, 80,0},
{e,e,0,0,0,0,0,1/4,80,89,0,0},
{e,e,0,0,0,0,0,0,1/4, 89,80, 0},
{0,0,0,0,0,0,1/4,0,0,1/4, 80,0},
{e,e,0,0,0, -3/4,0,0,0, 0,9, 0},
{-1/5,0,0,0,0,0,0,0,0,0,0,9}}

3 1, 1 1 .
outl4 {{9, ©,0,0,0,-_,0,0,0,0,0, - |, {a, Z,0,0, -,8,0,0,0,0,0,0,
a 5 4 4 J

{0,0,9,0,90,0,0,0,0,0,0, 08}, {9, 8,9,

B BB Bl Bl

PN

1 1 3 3 \
9, ,0,0,-,0,0,0,0,0,0, 0, {_73 6,0,0,0,9,0,0,0,0, -—,0,;,
4 4 4

4 4

Bl
[

0,0,0,0,0,09,0,0 -,0,0},{0,0,00,00,0 -,0,0,0,0,

IS
Bl

1 \ 1 1 3
6,0,0,0,0,0,0,9,—,90,0,80,, {03 6,0,0,0,90,—-,0,08,—-,0,0;,
4 . 4 4 J

3 \ 1 .
{6, 0,0,0,0,--,0,0,0,0,9,0;,, {——, 0,0,0,0,0,0,0,0,0,0, 9,
4 4 L 5 11

ins):- N[Eigenvalues [pl]]

outfs]= {10.0702, 9.14016, 9.00714, 9., 8.85984, 7.92979, 0.5, 0.25, 0.25, 0.25, 0.242863, 0.}
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B.1.3 The Choi matrix, C%(l 11
3

417

p2 ={{16,0,0,0,0,0,0,0,0,0,0,0},{0,1/2,0,0,-1/4,0,0,0,0,0,0,0},
{0,0,16,0,0,0,0,0,0,0,0,0},{0,0,0,1/2,0,0,0,0,0,0,0,0},
{0,-1/4,0,0,1/2,0,0,0,0,0,0,0},{0,0,0,0,0,16,0,0,0,0,0,0},
{0,0,0,0,0,0,16,0,0,-1/4,0,0},{0,0,0,0,0,0,0,1/2,0,0,0,03%,
{0,0,0,0,0,0,0,0,1/2,0,0,0%},40,0,0,0,0,0,-1/4,0,0,1/2,0,0%},
{0,0,0,0,0,0,0,0,0,0,16,0},{0,0,0,0,0,0,0,0,0,0,0,16}}

- p2 = {{16, 0, 0, 0, 0, 0, @, 0, 8, @, 9, 0},
{0,1/2,0,0,-1/4,0,9,0,0,0,0, 0},
{0,0,16,0,0,0,0,0,0, 0,0, 0},
{0,0,0,1/2,0,0,0,0,0,0,0, 0},
{0,-1/4,0,0,1/2,0,9,0,0,0, 0, 0},
{0,0,0,0,0,16,0,0,0, 0, 0, 0},
{0,0,0,0,0,0,16,0,0, -1/4, 0, 0},
{0,0,0,0,0,0,0,1/2,0,0,0,0),
{0,0,0,0,0,0,0,0,1/2,9,0,0)},
{¢,0,0,0,0,0,-1/4,0,0,1/2,0, 0},
{0,0,0,0,0, 0,0, 0,80, 0, 16, 0},
{0,0,0,0,0,0,0,0,9,0,0, 16} }

1 1 N
outsi- {{16, 0, 0,0,0,0,0,0,0,0,0,0}, {0, -,0,0,--,0,0,0,0,0,0,0),
2 4 E:
1 i
(0, 0,16,0,0,0,0,0,0,0,0,0},{0,0,0,-,0,0,0,00,0,0,0,
2

4

1 5
e; e 9, e; E; e) 93 e; 9, 9, e; e*; {e) e; 93 e) 9) 16) e) 9, e) e) 9, 613

{ 1
4

1 v 1 3
{9, 0, 9,0,0,0, 16, 0, 0, —;, 0, 0:, {0, 0,90,0,0,0,0, E, 6,9,0,0.,,

0,0,0,0,0,0,0

-
@
“

{63 a: a) a: e: a: a: e: » a) 16: a‘,’: {63 e: e: a) e: e: a) a) e: a) 6_, 16"“‘

inl«]:= N[Eigenvalues [p2]]
outf4]- {16.004, 16., 16., 16., 16., 16., 8.75, 6.5, 8.5, 0.5, ©.495969, 0.25}
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