JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 2016/2017 ACADEMIC YEAR

YEAR ONE SEMESTER TWO
MAIN REGULAR
APRIL 2017 EXAMINATION

COURSE CODE: SAS 102
COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY 1
EXAM VENUE:
STREAM: (BSc. Actuarial)
DATE:
EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)-(30 MARKS)

a) The joint density function of two continuous random variables X and Y is given by

$$
f(x, y)=\left\{\begin{aligned}
k(2 x-y), & 0 \leq x \leq 2,0 \leq y \leq 3 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Obtain
i. the value of k.
ii. the expected value of X
(6marks)
b) Let $f(x, y)=\left\{\begin{array}{c}6 x^{2} y, 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0, \text { otherwise }\end{array}\right.$ be the p.d.f. of two random variables X and Y, which must be of continuous type. Find $P(0<x<3 / 4, y>1 / 3)$
c) The joint probability function for two discrete random variables X and Y is tabulated as shown

	$\mathrm{Y}=0$	$\mathrm{Y}=1$	$\mathrm{Y}=2$	$\mathrm{Y}=3$
$\mathrm{X}=1$	0.06	0.02	0.04	0.08
$\mathrm{X}=2$	0.15	0.05	0.10	0.20
$\mathrm{X}=3$	0.09	0.03	0.06	0.12

Determine
i. Marginal distributions of X and Y .
ii. $\quad \mathrm{P}(\mathrm{X} \leq 2, \mathrm{Y} \geq 2)$
d) The failure of a circuit board interrupts work until a new board is delivered. The delivery time Y is uniformly distributed on the interval one to five days. The cost of a board failure and interruption C includes a fixed $\operatorname{cost} C_{0}$ and increases proportionally to the cube of the delivery time Y^{3}. This cost is modeled by $C=C_{0}+C_{1} Y^{3}$. Find
i. The probability that the delivery time does not exceed 4 days but must take at least one day.
ii. In terms of C_{0} and C_{1}, the expected cost associated with a single failed circuit board. (7marks)
e) Suppose X is a continuous random variable with $\operatorname{pdf} f(x)=\left\{\begin{aligned} 5 x^{4}, & 0<x<1 \\ 0, & \text { otherwise }\end{aligned}\right.$

Determine
i. The pdf of the continuous random variable Y where $Y=X^{3}$
ii. $p(0.5<Y<1)$

QUESTION TWO (20 MARKS)

a) Given $f(x, y)=\left\{\begin{array}{c}2 e^{-x-2 y}, \\ 0, \text { otherwise }\end{array}\right.$.

Determine
i. $P(X>1, Y<1)$
ii. $P(X<Y=10)$
b) A random variable X has the Beta distribution with parameters α and β as shown below.
$f(x)=\left\{\begin{array}{c}\frac{\Gamma(\alpha+\beta)}{\Gamma \alpha \Gamma \beta} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1, \alpha>0, \beta>0 \\ 0, \text { otherwise }\end{array}\right.$
Determine by derivation for this distribution, the standard deviation when $\alpha=8, \beta=10$. (11marks)

QUESTION THREE (20 MARKS)

a) The joint probability function of two discrete random variables X and Y is given by

$$
f(x, y)=\left\{\begin{array}{c}
k(2 x+y), 0 \leq x \leq 3,1 \leq y \leq 3 \\
0, \text { otherwise }
\end{array}\right.
$$

i. Obtain the value of k.
ii. Obtain $E\left(Y^{2}\right)$
iii. Deduce whether or not X and Y independent?
b) Consider the Weibull distribution with parameters a and b

$$
f(x)=\left\{\begin{array}{c}
a b x^{b-1} e^{-a x^{b}}, x>0 \\
0, \text { otherwise }
\end{array}\right.
$$

Obtain a general expression for the mean and the third raw moment for the distribution. (10marks)

QUESTION FOUR (20 MARKS)

a) The joint p.d.f of three continuous random variables X, Y and Z is defined as follows

$$
f(x, y, z)=\left\{\begin{array}{c}
k(x y+z), \quad 0<x<3,0<y<4,0<z<1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Calculate:
i. the value of k,
ii. the marginal distribution of X
iii. $E(Y Z / X=2)$
b) Determine the value of c for which the function below is a joint probability density function.

$$
f(x, y)=\left\{\begin{array}{cc}
c(x+y), \quad 0<x<3, x<y<2 x+1 \tag{6marks}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

QUESTION FIVE (20 MARKS)

a) A random variable Y has a probability density function given by $f(y)=\left\{\begin{array}{r}c y^{3} e^{-y / 2}, y>0, \\ 0, \text { otherwise }\end{array}\right.$.

Find C hence show that Y has a chi-square distribution. State the degrees of freedom.
(10 marks)
b) Let X and Y be two independent standard normal random variables. Suppose $U=X+Y$ and $V=2 X-$ Y are two new random variables in terms of X and Y . Determine the joint pdf of U and V. (10 marks)

