

### JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

# SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 2016/2017 ACADEMIC YEAR

## YEAR ONE SEMESTER TWO

# MAIN REGULAR

# **APRIL 2017 EXAMINATION**

**COURSE CODE: SAS 102** 

**COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY 1** 

**EXAM VENUE:** STREAM: (BSc. Actuarial)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

# **Instructions:**

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

## **QUESTION ONE (COMPULSORY)-(30 MARKS)**

The joint density function of two continuous random variables X and Y is given by

$$f(x,y) = \begin{cases} k(2x - y), & 0 \le x \le 2, 0 \le y \le 3 \\ 0, & otherwise \end{cases}$$

#### Obtain

- i. the value of k.
- ii. the expected value of X

(6marks)

b) Let 
$$f(x,y) = \begin{cases} 6x^2y, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & otherwise \end{cases}$$
 be the p.d.f. of two random variables *X* and *Y*, which must be of continuous type. Find

 $P(0 < x < \frac{3}{4}, y > \frac{1}{3})$ (6marks)

c) The joint probability function for two discrete random variables X and Y is tabulated as shown

|     | Y=0  | Y=1  | Y=2  | Y=3  |
|-----|------|------|------|------|
| X=1 | 0.06 | 0.02 | 0.04 | 0.08 |
| X=2 | 0.15 | 0.05 | 0.10 | 0.20 |
| X=3 | 0.09 | 0.03 | 0.06 | 0.12 |

#### Determine

i. Marginal distributions of X and Y. (2marks)

ii. 
$$P(X \le 2, Y \ge 2)$$

(2marks)

- d) The failure of a circuit board interrupts work until a new board is delivered. The delivery time Y is uniformly distributed on the interval one to five days. The cost of a board failure and interruption C includes a fixed cost  $C_0$  and increases proportionally to the cube of the delivery time  $Y^3$ . This cost is modeled by  $C = C_0 + C_1 Y^3$ . Find
  - The probability that the delivery time does not exceed 4 days but must take at least one day.
- ii. In terms of  $C_0$  and  $C_1$ , the expected cost associated with a single failed circuit board. (7marks) e) Suppose X is a continuous random variable with pdf  $f(x) = \begin{cases} 5x^4, & 0 < x < 1 \\ 0, & otherwise \end{cases}$

### Determine

i. The pdf of the continuous random variable Y where  $Y = X^3$ 

ii. 
$$p(0.5 < Y < 1)$$
 (7marks)

#### **QUESTION TWO (20 MARKS)**

a) Given 
$$f(x,y) = \begin{cases} 2e^{-x-2y}, & 0 < x < \infty, 0 < y < \infty \\ 0, & otherwise \end{cases}$$
.

#### Determine

i. 
$$P(X > 1, Y < 1)$$

ii. 
$$P(X < Y = 10)$$
 (9marks)

b) A random variable X has the Beta distribution with parameters  $\alpha$  and  $\beta$  as shown below.

$$f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma\alpha\Gamma\beta} x^{\alpha-1} (1-x)^{\beta-1}, & 0 < x < 1, \alpha > 0, \beta > 0 \\ 0, & otherwise \end{cases}$$

Determine by derivation for this distribution, the standard deviation when  $\alpha = 8$ ,  $\beta = 10$ . (11marks)

# **QUESTION THREE (20 MARKS)**

a) The joint probability function of two discrete random variables X and Y is given by

$$f(x,y) = \begin{cases} k(2x+y), & 0 \le x \le 3, 1 \le y \le 3\\ & 0, & otherwise \end{cases}$$

- i. Obtain the value of k.
- ii. Obtain  $E(Y^2)$
- iii. Deduce whether or not X and Y independent?
- b) Consider the Weibull distribution with parameters a and b

$$f(x) = \begin{cases} abx^{b-1}e^{-ax^b}, x > 0\\ 0, otherwise \end{cases}$$

Obtain a general expression for the mean and the third raw moment for the distribution. (10marks)

# **QUESTION FOUR (20 MARKS)**

a) The joint p.d.f of three continuous random variables X, Y and Z is defined as follows

$$f(x,y,z) = \begin{cases} k(xy+z), & 0 < x < 3, 0 < y < 4, 0 < z < 1\\ 0, & otherwise \end{cases}$$

Calculate:

- i. the value of k,
- ii. the marginal distribution of X

iii. 
$$E(YZ/X = 2)$$
 (14marks)

b) Determine the value of c for which the function below is a joint probability density function.

$$f(x,y) = \begin{cases} c(x+y), & 0 < x < 3, x < y < 2x + 1 \\ 0, & otherwise \end{cases}$$
 (6marks)

(10marks)

# **QUESTION FIVE (20 MARKS)**

a) A random variable Y has a probability density function given by  $f(y) = \begin{cases} cy^3 e^{-y/2}, & y > 0, \\ 0, & otherwise \end{cases}$ 

Find C hence show that Y has a chi-square distribution. State the degrees of freedom. (10 marks)

b) Let X and Y be two independent standard normal random variables. Suppose U = X + Y and V = 2X - Y are two new random variables in terms of X and Y. Determine the joint pdf of U and V. (10 marks)