JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION 2012/2013 $1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS WITH IT (SCHOOL BASED KOSELE LEARNING CENTRE)

COURSE CODE: SMA 103
TITLE: LINEAR ALGEBRA I
DATE: 3/5/2013 TIME: 3.30-5.30PM
DURATION: 2 HOURS

INSTRUCTIONS

1. This paper contains FIVE (5) questions
2. Answer question 1 (Compulsory) and ANY other 2 Questions
3. Write all answers in the booklet provided
a) Determine the values of x and y that will make the vector u and v equal if $u=(x+2, y+4,-5)$ and $v=(4,2,-5)$.
b) Given that $u=(7,1,-3,6)$ and $v=(3,5,2-1)$ Find $\quad\|u-v\|$.
c) Find the cross product of the vectors

$$
A=(1,-2,2) \text { and } B=(0,1-3) \text {. }
$$

d) Find the distance of the point $A(25,5,7)$ from the plane $2 x+4 y+3 z=3$.
e) Given the systems of equations below
$x-3 z=-3$,
$2 x+k y-z=-2$,
$x+2 y+k z=1$.
Find the value of k such that the equations have no solution.
(4marks)
f) Show that $u+v, u-v, u-2 v+w$ are independent given that u, v, w are independent vectors.
g) Let $F: R^{2} \rightarrow R^{2}$ be defined by $F(x, y)=(2 x-y, x)$.

Determine whether or not F is linear.
(4marks)
h) Write the vectors $v=(3,5)$ as a linear combination of $e_{1}=(1,3)$ and $e_{2}=(0,2)$
(3marks)
i) Let u, w be the subspaces of R^{3} defined by
$u=\{(a, b, c): a=b=c\}: a=b=c$ and
$w=\{(0, b, c): b, c \in R\}$: being a set of all vectors. Show that $R^{3}=u+w$.

QUESTION 2:(20 MARKS)

a) Find the angle between the vectors $u=(2,4,5)$ and $v=(-1,3,2)$. (3marks)
b) Let u and v be a vector in an inner product space V, prove that

$$
\begin{equation*}
\|u+v\| \leq\|u\|+\|v\| \cdot \tag{6marks}
\end{equation*}
$$

c) Find the equation of the plane through the point $\mathrm{p}(1,2,3)$ and is perpendicular to the vector $4 i+5 j+6 k$. (4marks)
d) Let $T: R^{2} \rightarrow R^{3}:$ be the linear mapping to which;

$$
\begin{equation*}
T(1,2)=(3,-1,5) \operatorname{and} T(0,1)=(2,1,-1) \tag{5marks}
\end{equation*}
$$

(i) $\operatorname{Find} T(a, b)$.
(ii) Evaluate $T(2,3)$

QUESTION 3: (20MARKS)

(a) Let V be the space of all 2 x 2 matrices over R . Let U and W be subspaces spanned by (A,B,C) and (D,E,F) respectively, where

$$
A=\left(\begin{array}{cc}
4 & 1 \\
-3 & 1
\end{array}\right), B=\left(\begin{array}{cc}
2 & 2 \\
-4 & -1
\end{array}\right), C=\left(\begin{array}{cc}
2 & 5 \\
-9 & -2
\end{array}\right), D=\left(\begin{array}{cc}
3 & -2 \\
6 & 1
\end{array}\right), E=\left(\begin{array}{cc}
-5 & -6 \\
8 & 2
\end{array}\right), F=\left(\begin{array}{cc}
-6 & -5 \\
3 & 1
\end{array}\right)
$$

i) Find $\operatorname{dim}(u+w)$.
ii) Find $\operatorname{dim}(u \cap w)$.
b) Let V be the vector space of polynominials of degree ≤ 3.Find, if possible nonzero scalars a, b and c such that $a u+b v+c w=0$, where:
$u=t^{3}-5 t^{2}-2 t+3$
$v=t^{3}-4 t^{2}-3 t+4$ and
$w=2 t^{3}-7 t^{2}-7 t+9$.

Deduce whether u, v and w are linearly dependent or independent.

QUESTION 4 :(20MARKS)

a) i) Define the term basis as used in linear algebra.

> ii)Find the rank of the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 3 & -2 & 5 & 4 \\
1 & 4 & 1 & 3 & 5 \\
1 & 4 & 2 & 4 & 3 \\
2 & 7 & -3 & 6 & 13
\end{array}\right)
$$

b)Find the dimension and basis for the solution space of the homogenous systems of equations given below;

$$
\begin{align*}
& x+2 y-4 z+3 r-s=0 \\
& x+2 y-2 z+2 r+s=0 \\
& 2 x+4 y-2 z+3 r+4 s=0 \tag{10marks}
\end{align*}
$$

c)Determine k so that the vectors $u=(2,3 k,-4,1,5)$ and $v=(6,-1,3,7,2 k)$ are orthogonal (4marks)

QUESTION 5: (20MARKS)

a)Define a linear Transformation F from a linear space v into a linear space u
b)Given that the operator T on R^{3} is defined by
$T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$. Find a Formula for the inverse operator T^{-1}.
c)Let $F: R^{4} \rightarrow R^{3}$ be the linear matrix

$$
F(x, y, s, t)=(x-y+s+t, x+2 s-t, x+y+3 s-3 t) .
$$

i)Find the dimension of image of F .
ii)Find a basis of the range of F.
ii)Determine the kernel of F .

