SEMESTER 11 SECOND YEAR BSC, BEd EXAMS

SEMESTER TWO, THIRD YEAR EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF EDUCATION/ SCIENCE

COURSE CODE: SMA 304

COURSE TITLE: GROUP THEORY

DATE: May, 2016
TIME: 2hrs

INSTRUCTIONS
Attempt Question1 and two other questions
Show all the necessary working

Question1 [30 marks] COMPULSORY

(a) Define a relation \sqcup on Z, the set of integers, by $m \square n$ if $m-n$ is divisible by 5 . Show that
(i) \sqcup is reflexive (ii) \sqcup is symmetric (iii) \sqcup is transitive
(iv) \sqcup defines an equivalence relation on Z
[4 marks]
(b)If $a \equiv b \bmod 7, c \equiv d \bmod 7$ and $(m, 7)=1$ prove that
(i) $a+c \equiv b+d \bmod 7($ ii) $a-c \equiv b-d \bmod 7($ iii $m a \equiv m b \bmod 7 \quad$ [10 marks]
(c) Consider the multiplication in $Z / 7$ as shown below.

\times	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2					
3	3		2			
4	4					
5	5				4	
6	6					1

(i) Complete the multiplication table
(ii) Show that $(5 \times 4) \times 6=5 \times(4 \times 6)$
(iii) State the neutral element
(iv) Determine the inverse of each element.
[10marks]
(d) Let $\langle G, \oplus\rangle,\langle\bar{G}, *\rangle$ be groups defined on the sets G, \bar{G} respectively.

If $\theta: G \rightarrow \bar{G}$ is a mapping defined from G into \bar{G}, state what is meant by
(i) θ is a homomorphism
(ii) θ is an isomorphism
(iii) K_{θ} is kernel of θ

Question 2 [20 marks]

Define the product $x \oplus y$ by, $x+y$ on the set R of real numbers and the product $x * y$ by $x \times y$ on the set R^{*} of nonzero real numbers .
(a) Prove that $\langle R, \oplus\rangle,\left\langle R^{*}, *\right\rangle$ are groups .
[10 marks]
(b) Suppose $\Phi: R \rightarrow R^{*}$ with $\Phi(r)=3^{r} ; r \in R$.
(i) show that Φ is a homomorphism
(ii) show that Φ is a one-to-one
(iii) determine K_{Φ} the kernel of Φ
[10 marks]

Question3 [20 marks]

Let $\langle G, \bullet\rangle,\langle H, *\rangle$ be finite groups defined on the sets G, H with binary operations \bullet,*
respectively.
If $\theta: G \rightarrow H$ is a homomorphism mapping defined from G into H, prove that K_{θ} the kernel of θ, is a normal subgroup of G.
[20 marks]

Question 4 [20 marks]

A mapping p is defined on a set of permutations by $p:(1234) \rightarrow(2341)$. Determine the least positive integer m such that $(p)^{m}:(1234) \rightarrow(1234) ; 1 \leq m \leq 24$. Let $p_{j}=(p)^{j}: j=1,2,3, \ldots \ldots, m$ and take $p_{1} \bullet p_{2}$ to mean p_{1} followed by $p_{2} ; p_{1} \bullet p_{1}=\left(p_{1}\right)^{2}$ to mean p_{1} followed by p_{1}; $p_{1} \bullet p_{2} \bullet p_{3}$ to mean p_{1} followed by p_{2} followed by p_{3} etc .

Construct Cayley table for the structure $\langle S, \bullet\rangle$ where $S=\left\{p_{1}, p_{2}, p_{3}, \ldots \ldots, p_{m}\right\}$.
(i) Show that • is closed on the set S
(ii) Show that $\left(p_{1} \bullet p_{2}\right) \bullet p_{3}=p_{1} \bullet\left(p_{2} \bullet p_{3}\right)$
(iii) State the neutral element p_{k}
(iv) Determine the inverse of each element p_{j}.
[20 marks]

Question 5 [20 marks]

Let $\langle G, \bullet\rangle,\langle H, *\rangle$ be groups defined on the sets G, H with binary operations $\bullet, *$ respectively. Define $G \times H$ by the ordered pair $\left(g_{1}, h_{1}\right)$ for which $G \times H=\left(g_{1}, h_{1}\right): g_{1} \in G, h_{1} \in H$. If $\left(g_{1}, h_{1}\right) \otimes\left(g_{2}, h_{2}\right)=\left(g_{1} \bullet g_{2}, h_{1} * h_{2}\right): g_{1}, g_{2} \in G, h_{1}, h_{2} \in H$ with \otimes, as a new binary operation on $G \times H$, prove that the direct product $\langle G \times H, \otimes\rangle$ forms a group. [20 marks]

