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INSTRUCTIONS 

 

Answer Question1 and two other questions 

Show all the necessary working 
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Question.1 [30 marks] Compulsory 

(a) Assume that  f x has a uniformly convergent Fourier series 
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Describe what is meant by Gibb’s phenomenon of the periodic function  f x . [9 marks] 

 

 

 

 (b) Given the function  
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(i) Sketch graph of  f x over the interval 60 60x    

(ii) State period of    f x        [11 marks] 

(c ) Obtain the Fourier half-range sine coefficients for this function   1 ,0f x x    . 

Sketch the anti-symmetric odd periodic extension of f(x) on (- ,  )  [10 marks]  

 
 

Question2 [20 marks] 
Find the general solution to the first order ordinary differential equation 
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Question3 [20 marks] 

Given real valued function   f x for which 
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   2f x f x    

(a)Sketch the graph  of  f x over the interval 14 14x       [5 marks] 

 (b)State period of    f x         [3 marks] 

(c)Deduce that 
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         [12 marks] 

Question4 [20 marks] 
(a) Obtain the Fourier series for  the function 
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(b) Show that the infinite series for    
x

F x f t dt


  converges   uniformly .  

(c ) Show that the infinite series for  
 df x

g x
dx

  does not converge.  
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Question5 [20 marks] 
(a) State and prove the Parseval’s Theorem    
 
(b) Consider the function defined on [0,  ) by 
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Obtain the Fourier cosine coefficients for this function  f x . 

Sketch the symmetric even periodic extension of f(x) on (- ,  ) 

 


