

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF INFORMATICS AND INNOVATIVE SYSTEMS

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE IN SECURITY AND FORENICS

3RD YEAR 1ST SEMESTER 2015/2016 ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: IIT 3315

COURSE TITLE: FUNDAMENTALS OF CRYPTOGRAPHY AND STEGANOGRAPHY

EXAM VENUE:

STREAM: BSC COMP SECURITY

DATE: DECEMBER 2016

EXAM SESSION:

TIME: 2.00 HOURS

INSTRUCTIONS:

- 1. Answer Question 1 (Compulsory) and ANY other two questions
- 2. Candidates are advised not to write on the question paper
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE

[30 MARKS]

[20 MARKS]

(a)) Define	e the following terms and concepts as applie	es to cryp	otography;	[4 Marks]
	(i)	Steganalysis	(iii)	Quantum Tele	eportation
	(ii)	Hash Functions	(iv)	Feistel Cipher	'S
(b) "Stega	mography is best used in conjunction with a	nother d	ata-hiding meth	od". Do you
	agree	with the statement? Explain.			[3 Marks]
(c)) Explai	in the three ways of characterizing cryptogra	aphic sys	tems.	[3 Marks]
(d	(d) Consider an <i>m</i> -round Feistel network where key size is equal to half the block size and				
	the round function $f(K,R) = K \oplus R$. Analyze how (in)secure this cipher is against				
	cipher	text only attacks and known plaintext attack	s when <i>r</i>	<i>n</i> is arbitrary.	[4 Marks]
(e)) Explai	in the four possible approaches to attacking	the RSA	algorithm.	[4 Marks]
(f)	Comp	are and contrast the following classification	of crypt	osystems;	[8 Marks]
	(i)	Symmetric and Asymmetric	(ii)	Classical and	Quantum
(g) There	has been increased emphasis on the cryptan	alytic att	tacks on Data E	ncryption
	Standa	ard (DES) and other symmetric block cipher	rs. Expla	in the <u>two</u> most	powerful and
	promis	sing approaches to that applies here.			[4 Marks]
QUES	STION	TWO			[20 MARKS]
(a)) Descri	be the Caesar Cipher.			[4 Marks]
(b) Descri	be at least two ways of breaking a Caesar C	ipher on	an English-lan	guage message.
					[4 Marks]

- (c) Show that DES decryption is, infact, the inverse of DES encryption. [4 Marks]
- (d) Compute the bits number 1, 16, 33, and 48 at the output of the first round of the DES decryption, assuming that the ciphertext block is composed of all ones and the external key is composed of all ones. [8 Marks]

QUESTION THREE

(a)	Using a	[4 Marks]			
	(i)	Polygraphic Ciphers	(ii)	Polyalphabetic	c Ciphers
(b)	Compa	are the security of features of Hill Cipher v	with that o	f Vigenère Cipł	ner. [4 Marks]

- (c) Encrypt the message "For sure you must be honest in whatever you are telling me" using the Hill Cipher with the key $\begin{pmatrix} 9 & 4 \\ 5 & 7 \end{pmatrix}$. Display your workings. [6 Marks]
- (d) Show your workings for corresponding decryption of the ciphertext to recover the original plaintext. [6 Marks]

QUESTION FOUR

- (a) Discuss the Elliptic Curve Digital Signature Algorithm (DSA) under the following headings: [8 Marks]
 - (i) Signature Generation Algorithm
 - (ii) Signature Verification Algorithm
- (b) Name and explain ANY TWO approaches used to distribute public keys in asymmetric cryptosystems. [4 Marks]
- (c) Below is a table summarizing the characteristics comparison between some examples of symmetric encryption algorithms. Fill in the blank spaces with appropriate information.

[8 Marks]

	Blowfish	Rijndael (AES)
Key Size		
Block Size		
Rounds		
Security Level		

QUESTION FIVE

[20 MARKS]

- (a) Using a suitable diagram in each case, describe the four modes of operation for block cipher.
 [8 Marks]
- (b) While referring to quantum key generation protocol and using a practical real life example, explain the implementation of the following phases as applies in quantum cryptography;[8 Marks]
 - (i) Error Correction (ii) Privacy Amplification
- (c) Differentiate between *Digital Signature Algorithm (DSA)* and *Digital Signature Standard (DSS)*. [4 Marks]

- END –

[20 MARKS]