JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

 SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCESUNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE
(PUBLIC \& COMMUNITY HEALTH)
$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2018/2019
KISUMU CAMPUS

COURSE CODE: SCH 3111
COURSE TITLE: PHYSICAL CHEMISTRY

EXAM VENUE:
DATE:

STREAM: (BSc. Public \& Commu. Health)
EXAM SESSION:

TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Useful data
$\mathrm{a}=4.17 \mathrm{~L}^{2}$ atm. mol^{-2}
$\mathrm{b}=0.0371 \mathrm{~L} . \mathrm{mol}^{-1}$
$\mathrm{R}=0.0821 \mathrm{~L}$ atm. $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Molar mass $\mathrm{Mg}=24 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{N}_{2}=28 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{O}_{2}=32 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{NH}_{3}=17.03 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{H}_{2}=2 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass of glucose $=180.2 \mathrm{~g} . \mathrm{mol}^{-1}$

INSTRUCTIONS: Answer Question 1 and any other TWO questions

QUESTION ONE (30 marks)

1. (a) Define the following;
(i) Equilibrium constant
(ii) Chemical change
(iii) Electrolyte
(iv) Voltaic cells
(v) Effusion
(vi) Ideal gas equation
(b) 3.25 moles of ammonia was found to occupy 1.30 litres at $50^{\circ} \mathrm{C}$. Calculate the pressure that would be expected if the gas behaves as a real gas. [6 marks]
(c) Hydrogen gas is prepared as per the following chemical equation;

$$
\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{Mg}(\mathrm{~s}) \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Balance and calculate the amount of Magnesium in kilograms required to prepare 2 L of H_{2} gas at 750 mmHg and $30^{\circ} \mathrm{C}$.
[6 marks]
(d) What is the percentage yield of $\mathrm{H}_{2} \mathrm{O}$ if 138 g of $\mathrm{H}_{2} \mathrm{O}$ is produced from H_{2} and excess O_{2} ?
[6 marks]

QUESTION TWO (20 marks)

2. (a) Derive the ideal gas equation from basic gas laws.
(b) What is a redox reaction? Explain using an example.
(c) 1.0 g of air consists of approximately 0.72 g of nitrogen and 0.28 g of oxygen. Calculate the total pressure when this sample occupies a 2.00 L vessel at $20^{\circ} \mathrm{C}$.
[7 marks]
(d) Classify the following as either physical or chemical changes:
(i) The evaporation of alcohol
(ii) Oxygen gas supports combustion
(iii) Crushing a panadol tablet
(iv) Photosynthesis
[4 marks]

QUESTION THREE (20 marks)

3. (a) Give any TWO applications of electrochemistry.
[2 marks]
(b) Identify the oxidizing and reducing agent in the following redox reaction [4 marks]

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{IO}_{3}^{-}
$$

(c) Insulin is a hormone that controls the use of glucose in the body. How many moles of insulin are required to make 28.0 mL of a 0.0048 M insulin solution? [3 marks]
(d) Assign oxidation number to the underlined atoms in;
$\mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{AsO}_{3}{ }^{-}$
(e) Eucalyptus leaves produces oil with a density of $0.4 \mathrm{~g} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$ at a pressure of 700 Torr. Calculate the molecular weight of the eucalyptus oil.

QUESTION FOUR (20 marks)

4. (a) Balance the following reaction equations:
(i) $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
[2 marks]
(ii) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
[2 marks]
(b). Distinguish the following terms:
(i) Gas and a liquid
(ii) Reduction and Oxidation
(ii) Real gas and Ideal gas
(iv) Saturated and supersaturated solution
(v) Oxidation number and Oxidation
(c) Explain the meaning of the term 'colligative property' and give its properties. [6 marks]

QUESTION FIVE (20 marks)

5. (a) The equilibrium constant for the reaction below is 0.2 .

$$
2 \mathrm{HF} \leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2}(\mathrm{~g})
$$

2 moles of hydrogen and 1 mole of iodine were mixed in a 1 L vessel at $400^{\circ} \mathrm{C}$. What are the concentrations of the species present at equilibrium?
(b) Discuss the FOUR factors affecting the chemical equilibrium in a system.
[8 marks]
(c) State the Le Chatelier's Principle
[2 marks]
(d) A solution contains 2.75 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ dissolved in 15.2 g of water. What are the mole fractions of glucose and water?

