

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE) 4TH YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR MAIN

MAIN REGULAR

COURSE CODE: SCH 402

COURSE TITLE: INORGANIC REACTION MECHANISMS

EXAM VENUE: STREAM: EDUCATION

DATE: EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS) COMPULSORY

a)	Determine the electronic configurations of the following transition elements and hence their ions. V(23);		
	Cr (24); Fe (26); Cu (29)	[10 mrks]	
	I) V^{4+}		
	II) Cr ³⁺		
	$III) Fe^+$		
	$IV) Fe^{3+}$		
	V) Cu ⁺		
b)	Distinguish between crystal-field theory and ligand-field theory as models of the electronic structure of		
	the d-metal complexes.	[4mks]	
c)	Determine the ligand -field stabilization energies of the following;		
	a)	d ³ b) high-	
	spin d^5 (c) high-spin d^6 (d) low-spin d^6 (e) d^9	[10mks]	
d)	I) a) The magnetic moment of a certain octahedral Co (II) complex is 4.0 μ_B . Determine is its d-electron		
	configuration?	[3mks]	
	b) the magnetic moment of the complex $[Mn(NCS)_6]^{4-}$ is 6.06 μ_B . determine its electronic		
	configuration	[3mks]	
	QUESTION TWO (20 MARKS)		
a)		[2mks]	
ii) By use of an illustration using π orbitals of ligand, describe the effect of a π -donor ligand and a			
	π – acceptor ligand.	[6mks]	
b) The second-order rate constant for the reaction of I with trans-[Pt(CH ₃)Cl(PEt ₃) ₂] in methanol at 30 °C			

c) The second-order rate constants for formation of $[VX(OH_2)_5]^+$ from $[V(OH_2)_6]^{2^+}$ and X^- for $X^- = Cl^-$, NCS⁻, and N₃⁻ are in the ratio 1:2:10. What do the data suggest about the rate determining step for the substitution reaction?

the reaction given the n_{Pt} values of 5.42 and 3.58, respectively, for the two nucleophiles.

is 40 dm³ mol⁻¹s⁻¹. The corresponding reaction with N₃⁻ has $k_2 = 7.0$ dm³mol⁻¹s⁻¹. Estimate S and C for

d) The rate constants for the formation of $[CoX(NH_3)_5]^{2+}$ from $[Co(NH_3)_5OH_2]^{3+}$ for $X=Cl^-$, Br^- , N_3^- , and SCN^- differ by no more than a factor of two. Determine the mechanism of the substitution. [4mks]

QUESTION THREE (20 MARKS)

- a) If a substitution process is associative, give a reason why it may be difficult to characterize an aqua ion as labile or inert? [2mks]
- b) i) Distinguish between associative mechanism and dissociative mechanism in relation to substitution reaction. [2mks]
 - ii) the reaction s of Ni(CO)₄ in which phosphines or phosphites replace CO to give Ni(CO)₃L all occur at the same rate regardless of which phosphine or phosphite is being used. With reason state whether the reaction is associative or dissociative. [2mks]
- c) Predict the products of the following reactions;
 - a) $[Pt(PR_3)_4]^{2+} + 2Cl^{-}$
 - b) $PtCl_4]^{2-} + 2PR_3$ [2mks]
 - c) cis- $[Pt(NH_3)_2(py)_2]^{2+} + 2Cl^{-}$ [2mks]

[2mks]

d) a) Write out the inner-and outer-sphere pathways for reduction of azidopentaamminecobalt(III) ion with V^{3+} (aq) [4mks]

b) Based on the two pathways above, explain the experimental data that can be used to distinguish between them.

[4mks]

QUESTION 4 (20 MARKS)

a) How does each of the following modifications affect the rate of a square-planar complex substitution reaction?

i) Changing a trans ligand from H to Cl.

[3mks]

ii) Changing the leaving group from Cl to I.

[3mks]

iii) Adding a bulky substituent to a cis ligand

[3mks]

iv) Increasing a positive charge on the complex.

[3mks]

b) Octahedral complexes of metal centers with high oxidation numbers or of d metals of the second and third series are less labile than those of low oxidation number and d metals of the first series of the block. Explain this observation on the basis of a dissociative rate determining step.

[5mks]

c) The rate of loss of chlorobenzene, PhCl, from [WCO)₄L(PhCl)] increases with increase in the cone angle of L. how does this observation suggest about the mechanism? [3mks]