JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION
$2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER 2018/2019

## MAIN REGULAR

COURSE CODE: SPH 203
COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS I

EXAM VENUE:
DATE: STREAM: (B.Ed Sc) EXAM SESSION:

TIME: 2:00 HRS

## INSTRUCTIONS:

1. Attempt question 1 (compulsory) and ANY other two questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

## Question 1

(a) (i) Compute the limit

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{\sqrt[3]{x}-1}
$$

(ii) Show that $\cosh ^{2} x-\sinh ^{2} x=1$
(b) Find, from first principles, the derivative of the function

$$
y=x^{-1}
$$

(c) Evaluate the following integral,

$$
\int x \sin 5 x \mathrm{~d} x
$$

(d) (i) List down any two axioms of a vector space.
(ii) Investigate whether the following is a basis for $\mathbb{R}^{2}$,

$$
\left\langle\binom{ 1}{1},\binom{2}{4}\right\rangle
$$

(6 Marks)
(e) Determine a scalar $c$ such that the following vectors are orthogonal,

$$
\vec{a}=2 \hat{\mathbf{i}}-c \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad \vec{b}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}
$$

(f) The potential energy between two atoms in a diatomic molecule is given by $U(x)=$ $2 / x^{12}-1 / x^{6}$. Find the minimum potential energy between the two atoms.
(5 Marks)

## Question 2

(a) A curve $C$ has the parametric equations $x=2 t-5, y=t^{2}-4 t+3$. Find an equation of the tangent line to $C$ that is parallel to the line $y=3 x+1$.
(b) A boy wishes to cut a 2.5 m long piece of wire into two pieces. One piece will be bent into a circular shape and the other into the shape of a square. Find the length that each wire should have so that the sum of the areas is a maximum (you may leave your answers in terms of $\pi$ ).
(c) Differentiate with respect to $x$ :
(i) $y=5 x^{4}-\frac{1}{\sqrt[3]{x}}$
(ii) $y=2 \cos ^{3} x+\sin 4 x$

## Question 3

(a) Consider the set $V$ of all ordered triples of real numbers $(x, y, z)$. Let the operations $(+)$ and $(\cdot)$ be defined by

$$
\begin{aligned}
(x, y, z)+\left(x^{\prime}, y^{\prime}, z^{\prime}\right) & =\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \\
c \cdot(x, y, z) & =(c x, y, z)
\end{aligned}
$$

Show that $V$ is not a vector space.
(b) Use an appropriate method to evaluate,

$$
\int \frac{x^{2}+2 x+4}{(x+1)^{3}} \mathrm{~d} x
$$

## Question 4

(a) Use de L'Hôpital's rule to evaluate,

$$
\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}
$$

(b) A series is given by

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Find the radius and interval of convergence for the series.
(c) Given the sine series,

$$
\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

use calculus to obtain the cosine series. Hence or otherwise calculate the cosine of 0.1 radians.
(d) The second term of an arithmetic series is 6 and the sixth term is 18 . Find the sum of the first ten terms of the series.

## Question 5

(a) (i) State two practical applications of calculus in physics.
(ii) In the adiabatic expansion of air, the pressure $P$ and volume $V$ are related by $P V^{1.4}=k$, where $k$ is a constant. At a certain instant, the pressure is $10000 \mathrm{~N} / \mathrm{m}^{2}$ and the volume is $32 \mathrm{~m}^{3}$. At what rate is the pressure changing at that instant if the volume is decreasing at a rate of $2 \mathrm{~m}^{3} / \mathrm{s}$ ?
(b) (i) Given that $\vec{a}=\hat{\mathbf{1}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\vec{b}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$, evaluate the vector product $\vec{a} \times \vec{b}$.
(ii) Obtain the component of $\vec{a}$ in the direction of $\vec{b}$.
(c) A transformation $\vec{L}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by

$$
\vec{L}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+1 \\
2 y \\
z
\end{array}\right]
$$

Determine whether $\vec{L}$ is a linear transformation.

