

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF ENGINEERING AND TECHNOLOGY

UNIVERSITY EXAMINATIONS FOR THE DIPLOMA IN BUILDING AND CIVIL ENGINEERING

3RD YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR

CENTRE: MAIN CAMPUS

COURSE CODE: TBC 2316

COURSE TITLE:

EXAM VENUE: STREAM: DIP BLD & CIVEN

DATE: ../12/2018 EXAM SESSION:

DURATION: 2 HOURS

Instructions

- 1. Answer question 1 (Compulsory) and ANY other two questions
- 2. Candidates are advised not to write on question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Question 1

Hydrological cycle is a model that describes the storage and movement of water between the biosphere, atmosphere, lithosphere and the hydrosphere. Therefore define the following terms;

- a) Biosphere, atmosphere, lithosphere and hydrosphere. (4 Marks)
- b) Condensation, Transpiration, Evapotranspiration, precipitation, Evaporation, runoff, percolation, infiltration and transportation with reference to hydrological cycle. (9 Marks)
- c) Draw schematic diagram that self explains the term hydrological cycle. (7 Marks)

Question 2

The total area of a river basin whose surface runoff (due to a storm) drains into the river within the basin is taken as a hydrologic unit and is called drainage basin, watershed or catchment area of a flowing river.

- a) Name five river basins that discharge there water into lake Victoria; are they part of Nile basin (write Yes or No); (5 Marks)
- b) Define the following terms with reference to a river basins; Concentration time; concentration point, Water divide and drainage divide.(11 marks)
- c) Write the formula for the hydrologic equation and explain the meaning with reference to a catchment. (4 Mark)

Ouestion 3

A basin has an area of 26560 km2, perimeter 965 km and length of 230 km. Determine: (i) form factor, (ii) compactness coefficient, (iii) elongation ratio, and (iv)circularity ratio. (20 Marks)

Question 4

- a) Define the terms hydrograph and Unit Hydrograph (6 Marks)
- b) Explain the key terms (not more than seven steps) that defines the natural hydrograph from start till the end of it.(7 Marks)
- c) State the seven steps that are adopted in derivation of a unit hydrograph from an observed flood hydrograph. (7 Marks)

Question 5

The data in the Table 1 below were collected for a stream at a gauging station by use of a current meter;

- a) Identify and name the computation method used (0.45 Marks)
- b) Write the needed equations for the computations (2 Marks)
- c) and fill the spaces in the table using (b) (17.55 Marks)

Table 1: A Current Meter used Below a Water Surface								
Distance from one end of water surface	Depth d (m)	Depth= xd = (0.6,0.2,0.8) (m)	Rev (R)	Time (sec)	$N = \frac{R}{t}$ (rps)	V = 0.3N + 0.005 (m/s)	Average Velocity in Strip V (m/s)	Discharge in Strip $\Delta Q = (bd)V$ $b = 3m$
3	1.4		12	50	0.24			
6	3.3		38	52	0.73			
			23	55	0.42			
9	5		40	58	0.69			
			30	54	0.56			
12	9		48	60	0.80			
			34	58	0.59			
15	5.4		34	52	0.65			
			30	50	0.60			
18	3.8		35	52	0.67			
			30	54	0.56			
21	1.8		18	50	0.36		••••	
							Total Q	= m ³

NB; d = depth, Q = discharge, R = revolutions, t = time, v = velocity, b = width of stream, rps = revolutions per second.