JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITYDRAFT EXAMINATION FOR BSc IN MATHEMATICS
$2^{\text {nd }}$ YEAR $1^{\text {st }}$ SEMESTER 2017/2018 ACADEMIC YEAR
MAIN CAMPUS

COURSE CODE: IIT 3218
COURSE TITLE :INTRODUCTION TO NUMBER THEORY

EXAM VENUE:
STREAM: BSc Y2S1

TIME: 2 HOURS
EXAM SESSION:

Instructions:

Answer question1 and any other two questions

1. Show all the necessary working
2. Candidates are advised not to write on the question paper

Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION 1 (30 MARKS)

(a) State four properties of real numbers.
(b) Suppose a, b and c are integers, prove that
(i) If a / b and b / c, then a / c. (3 marks)
(ii) If a / b, then for any integer $x, a / b x$ (3 marks)
(c) Given that $a=573$ and $b=-16$, find the integers q and r such that $a=b q+r \quad$ and $\quad 0<r<|b|$.
(d) Let $a=8316$ and $b=19800$. Express each number in its prime factors and hence find:
(i) $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$
(ii) $\operatorname{lcm}(a, b)$
(2 marks)
(e) Construct the addition and multiplication tables for \square_{5}
(4 marks)
(f) Prove that if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$ and that a and b both divide c , then ab divides c . (4 marks)
(g) Solve the congruence equation $8 x \equiv 12(\bmod 28)$

QUESTION 2 (20 MARKS)

(a) Suppose a / b and a / c. Prove that for any integers m and $\mathrm{n}, a /(b m+c n)$.(6 marks)
(b) Let $a=-433$ and $b=-17$. Find the integers q and r such that $a=b q+r \quad$ and $0<r<|b|$.
(4 marks)
(c) Determine all the solutions of the integers in the linear Diophantine equation $247 x+91 y=52$.

QUESTION 3 (20 MARKS)

(a) Let m be a positive integer. Prove that:
(i) For any integer a, $a \equiv a(\bmod m)$
(ii) if $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$.
(b) Let $\quad a=252$ and $b=198$.
(i) Using division algorithm find $d=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$, the greatest common divisor of a and b
(6 marks)
(ii) Using Euclidean algorithm, find the integers x and y such that $d=x a+y b$ (6 marks)
(iii) Find $\operatorname{lcm}(a, b)$, the least common multiple of a and b.
(2 marks)

QUESTION 4 (20 MARKS)

(a) Let a and b be relatively prime integers. Explain what is meant by relatively prime.
(b) Suppose $a \equiv c(\bmod m)$ and $b \equiv d(\bmod m)$. Prove that :
(i) $a+b \equiv c+d(\bmod m)$
(4 marks)
(ii) $a \cdot b \equiv c \cdot d(\bmod m)$
(c) State the Chinese remainder theorem.
(d) Solve the following systems of linear congruence equation.

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 4(\bmod 11)
\end{aligned}
$$

QUESTION 5 (20 MARKS)

(a) Let a and b be two real numbers such that $|a+b| \leq|a|+|b|$.

Show that $|a-b| \geq||a|-|b||$
(7 marks)
(b) Solve the following congruence equation.
(i) $x^{2}-1 \equiv 0(\bmod 8)$
(ii) $33 x \equiv 38(\bmod 280)$
(9 marks)

