

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITYDRAFT EXAMINATION FOR BSc IN MATHEMATICS

2nd YEAR 1st SEMESTER 2017/2018 ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: IIT 3218

COURSE TITLE :INTRODUCTION TO NUMBER THEORY

EXAM VENUE:

STREAM: BSc Y2S1

TIME: 2 HOURS

EXAM SESSION:

Instructions:

Answer question1 and any other two questions

- 1. Show all the necessary working
- 2. Candidates are advised not to write on the question paper

Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION 1 (30 MARKS)

(a) State four properties of real numbers.	(4 marks)			
(b) Suppose a, b and c are integers, prove that				
 (i) If a/b and b/c, then a/c. (ii) If a/b, then for any integer x, a/bx 	(3 marks) (3 marks)			
(c) Given that $a = 573$ and $b = -16$, find the integers q and r such that a = bq + r and $0 < r < b $. (4 marks)				
(d) Let $a = 8316$ and $b = 19800$. Express each number in its prime factors a (i) $gcd(a,b)$ (ii) $lcm(a,b)$	` '			
(e) Construct the addition and multiplication tables for \Box_5 (f) Prove that if gcd(a,b)=1 and that a and b both divide c, then ab divides c. (g) Solve the congruence equation $8x \equiv 12 \pmod{28}$	(4 marks) (4 marks) (4 marks)			

QUESTION 2 (20 MARKS)

- (a) Suppose a/b and a/c. Prove that for any integers m and n, a/(bm+cn).(6 marks)
- (b) Let a = -433 and b = -17. Find the integers q and r such that a = bq + r and 0 < r < |b|. (4 marks)
- (c) Determine all the solutions of the integers in the linear Diophantine equation 247x+91y=52. (10 marks)

QUESTION 3 (20 MARKS)

- (a) Let m be a positive integer. Prove that:
- (i) For any integer a, $a \equiv a \pmod{m}$ (3 marks)

(ii) if $a \equiv b \pmod{m}$,	, then $b \equiv a$ ($\mod m$).	(3 marks)
---------------------------------	-----------------------	----------	----	-----------

(b) Let a = 252 and b = 198.
(i) Using division algorithm find d = gcd(a,b), the greatest common divisor of a and b
(6 marks)
(ii) Using Euclidean algorithm, find the integers x and y such that d = xa + yb
(6 marks)
(iii) Find lcm(a,b), the least common multiple of a and b.

QUESTION 4 (20 MARKS)

- (a) Let a and b be *relatively prime* integers. Explain what is meant by relatively prime. (2 marks)
- (b) Suppose $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$. Prove that :
 - (i) $a+b \equiv c+d \pmod{m}$ (4 marks)
 - (ii) $a.b \equiv c.d \pmod{m}$ (4 marks)
- (c) State the Chinese remainder theorem. (2 marks)

(d) Solve the following systems of linear congruence equation. (8 marks)

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$

$$x \equiv 4 \pmod{11}$$

QUESTION 5 (20 MARKS)

(a) Let a and b be two real numbers such that $|a+b| \le |a|+|b|$.

Show that $|a-b| \ge ||a|-|b||$ (7 marks)

- (b) Solve the following congruence equation.
 - (i) $x^2 1 \equiv 0 \pmod{8}$ (4 marks)
 - (ii) $33x \equiv 38 \pmod{280}$ (9 marks)