SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE

$$
\begin{gathered}
1^{\text {ST }}{\text { YEAR } 1^{\text {ST }} \text { SEMESTER 2018/2019 ACADEMIC YEAR }}_{\text {MAIN REGULAR }} \text { (}
\end{gathered}
$$

COURSE CODE: SMA 3111

COURSE TITLE: CALCULUS I
EXAM VENUE:
STREAM: (...................)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) (30 marks)

a) Let $f(x)$ be a function. Define a continuous function $f(x)$ at $x=x_{0}$
(3 marks)
b) Find $\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-2 x-8}{x-2}$
c) Given

$$
f(x)=\left\{\begin{array}{rr}
1 / x, & x>0 \\
3 x+2, & x<0
\end{array}\right.
$$

Find the one-sided limits:
$\lim _{x \rightarrow 0+} f(x) \quad \lim _{x \rightarrow 0-} f(x) \quad \lim _{x \rightarrow+\infty} f(x) \quad \lim _{x \rightarrow-\infty} f(x)$
d) Determine the point of discontinuity (if any) of the function $f(x)$

$$
f(x)=\frac{x-1}{(x+3)(x-2)}
$$

State the type of discontinuity at the points.
e) Given that $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, find $f^{\prime}(x)$ if $f(x)=x^{2}-2 x$, and hence find the value of the derivative: $f^{\prime}(-3)$
f) Find the first and second derivatives of the function below:

$$
\begin{equation*}
y=6 \cos 2 x-10 e^{3 x}-\frac{5}{x^{2}} \tag{4marks}
\end{equation*}
$$

g) Find $\frac{d y}{d x}$ by implicit differentiation, if $x^{2} y^{2}+x \sin y=4$.
h) Given that $f(x)=\frac{2 x+1}{x^{2}-1}$, find $f^{\prime}(x)$

QUESTION TWO (20 marks)

a) Evaluate $\frac{d y}{d x}$ at $x=2.5$, correct to 4 significant figures, given $y=\frac{2 x^{2}+3}{\ln 2 x}$. (5 marks)
b) Evaluate $\lim _{x \rightarrow \infty} \frac{4 x^{4}+5}{\left(x^{2}-2\right)\left(2 x^{2}-1\right)}$.
c) Find all the critical numbers of $f(x)=x^{3}-5 x^{2}-8 x+3$
d) If $3 x^{2}+2 x^{2} y^{3}-\frac{5}{4} y^{2}=0$ evaluate $\frac{d y}{d x}$ when $x=\frac{1}{2}$ and $y=1$.

QUESTION THREE (20 marks)

a) Find $D_{x} f(x)$ given

$$
f(x)=e^{2 t} \ln 3 t
$$

b) Discuss the continuity of the function $f(x)$ given that;

$$
f(x)=\left\{\begin{aligned}
x+2, & -1 \leq x \leq 3 \\
14-x^{2}, & 3 \leq x \leq 5
\end{aligned}\right.
$$

c) Differentiate $y=\tan ^{2}(3 x-2)$ with respect to x.
d) Prove that

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

QUESTION FOUR (20 marks)

 (4 marks) (5 marks)
c) A point moves along the curve $y=x^{3}-3 x+5$ so that $x=\frac{1}{2} \sqrt{t}+3$ here t is time. At hat rate is y changing hen $t=4$
d) Compute the folloing deriatives
i. $\quad y=\ln (x \sin x+1)$
ii. $\quad y=e^{x^{2}}$

QUESTION FIVE (20 marks)

a) If $x=2 t /(t+2), y=3 t /(t+3)$, find $\frac{d y}{d x}$ in terms of t.
(5 marks)
b) The displacement $s \mathrm{~cm}$ of the end of a stiff string at time t seconds is given by: $s=a e^{-k t} \sin 2 \pi f t$. Determine the velocity and acceleration of the end of the spring after 2 seconds if $a=3, k=0.75$ and $f=20$.
c) Determine for the curve $y=2 x^{2}-3 x$ at the point $(2,2)$ the equation of the normal.
(5 marks)
d) Calculate the derivate of $\sqrt{7 x^{3}-2 x^{2}+5}$
(5 marks)

