

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE

1ST YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR MAIN REGULAR

DATE:	EXAM SESSION:
EXAM VENUE:	STREAM: ()
COURSE TITLE: CALCULUS I	
COURSE CODE: SMA 3111	

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) (30 marks)

a) Let f(x) be a function. Define a continuous function f(x) at $x = x_0$ (3 marks)

b) Find
$$\lim_{x \to 2} \frac{x^3 + x^2 - 2x - 8}{x - 2}$$
 (5 marks)

c) Given

$$f(x) = \begin{cases} 1/x, & x > 0\\ 3x + 2, & x < 0 \end{cases}$$

Find the one-sided limits:

 $\lim_{x \to 0^+} f(x) \quad \lim_{x \to 0^-} f(x) \quad \lim_{x \to +\infty} f(x) \quad \lim_{x \to -\infty} f(x)$

d) Determine the point of discontinuity (if any) of the function f(x)

$$f(x) = \frac{x - 1}{(x + 3)(x - 2)}$$

State the type of discontinuity at the points.

- e) Given that $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$, find f'(x) if $f(x) = x^2 2x$, and hence find the value of the derivative: f'(-3) (5 marks)
- f) Find the first and second derivatives of the function below: $y = 6\cos 2x - 10e^{3x} - \frac{5}{x^2}$ (4 marks)

g) Find
$$\frac{dy}{dx}$$
 by implicit differentiation, if $x^2y^2 + x\sin y = 4$. (4 marks)

h) Given that
$$f(x) = \frac{2x+1}{x^2-1}$$
, find $f'(x)$ (4 marks)

(4 marks)

(4 marks)

QUESTION TWO (20 marks)

a) Evaluate $\frac{dy}{dx}$ at x = 2.5, correct to 4 significant figures, given $y = \frac{2x^2 + 3}{\ln 2x}$. (5 marks)

b) Evaluate
$$\lim_{x \to \infty} \frac{4x^4 + 5}{(x^2 - 2)(2x^2 - 1)}$$
. (5 marks)

c) Find all the critical numbers of $f(x) = x^3 - 5x^2 - 8x + 3$ (4 marks)

d) If
$$3x^2 + 2x^2y^3 - \frac{5}{4}y^2 = 0$$
 evaluate $\frac{dy}{dx}$ when $x = \frac{1}{2}$ and $y = 1$. (6 marks)

QUESTION THREE (20 marks)

a) Find $D_x f(x)$ given	l	
$f(x) = e^{2t} \ln 3t$		(5 marks)
b) Discuss the continu	ity of the function $f(x)$ given that;	
$f(x) = \begin{cases} x+2, \\ 14-x^2, \end{cases}$	$-1 \le x \le 3$	
$\int (x)^{-1} (14 - x^2)$	$3 \leq x \leq 5$	

(5 marks)

(5 marks)

c) Differentiate $y = tan^2(3x - 2)$ with respect to x.

$$\lim_{\theta\to 0}\frac{\sin\theta}{\theta}=1$$

d) Prove that

(5 marks)

QUESTION FOUR (20 marks)

If $y = 3^{x^2 + x}$, find the first derivative a) (4 marks) b) Find $\frac{dy}{dx}$ given that $y = \sin 3x + \cos 2x$ (5 marks)

- c) A point moves along the curve $y = x^3 3x + 5$ so that $x = \frac{1}{2}\sqrt{t} + 3$ here t is time. At hat rate is y changing hen t = 4(5 marks) (6 marks)
- d) Compute the folloing derivatives
- $y = \ln(x \sin x + 1)$ i.
- ii. $y = e^{x^2}$

QUESTION FIVE (20 marks)

a) If x = 2t/(t+2), y = 3t/(t+3), find $\frac{dy}{dx}$ in terms of t. (5 marks)

b) The displacement s cm of the end of a stiff string at time t seconds is given by: $s = ae^{-kt} \sin 2\pi f t$. Determine the velocity and acceleration of the end of the spring after 2 seconds if a = 3, k = 0.75 and f = 20.(5 marks)

- c) Determine for the curve $y = 2x^2 3x$ at the point (2,2) the equation of the normal. (5 marks)
- d) Calculate the derivate of $\sqrt{7x^3 2x^2 + 5}$ (5 marks)