

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE/BACHELOR OF SCIENCE(ACTUARIAL SCIENCE WITH IT)

1ST YEAR 1STSEMESTER 2018/2019 ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: SMA 101

COURSE TITLE: ANALYTIC GEOMETRY

EXAM VENUE: STREAM:

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY 30 MARKS)

- a) Define the Conic sections belowi)Ellipseii) Hyperbola(2 marks)
- b) A line L₁ has an equation y = -2x + 6. Calculate the acute angle between L₁ and L₂whose equation is 3y + 2y + 6 = 0 (6 marks)
- c) Convert the following polar coordinates in to Cartesian coordinates. (i)(-4, 60°) (ii) $(5, \frac{\pi}{2})$ (4 marks
- d) Find the radius of a circle whose area is the same as the area of an ellipse whose equation is $25(x-1)^2 + 16(y+2)^2 = 1$ (4 marks)
- e) Calculate the area of a circle which passes through (1, 7), (-16, 0) and (8,0). (Take $\pi = 3.142$) (6 marks)
- f) Determine the perpendicular distance between a point (6,-3) and the line y = 2x + 1 (4 marks)
- g) Use the third order matrix determinant to determine the equation of a line passing through the points (4, 8) and (9, -2) giving your answer in double intercept form, hence declaring the intercepts. (4 marks)

QUESTION TWO (20 MARKS)

- a) The Equation of an ellipse is given by $25x^2 + 9y^2 150x + 36y + 36 = 0$ Determine on the xy plane
 - (i) The centre of the ellipse (2 marks)
 - (ii) The vertices (4 marks)
 - (ii) The foci (3 marks)
 - (iii) The eccentricity (1 mark)
 - (v) The equations of the directrices (3 marks)
 - (vi) The Equations of the axes of the ellipse (2 marks)
- b) Consider the polar curve of a conic section given by $r = \frac{2}{1 2\cos\theta}$, sketch the curve hence determine the eccentricity, focus and equation of the directrices of the conic section. (5 marks)

QUESTION THREE (20 MARKS)

- a) The equation of a hyperbola $9x^2 16y^2 36x = 108$ Find
 - (i) The centre and axes of the hyperbola (6 marks)
 - (ii) The foci (3 marks)

- **Eccentricity** (iii) (1 mark)
- (iv) the equations of the directrices of the hyperbola (2 marks)
- b) Determine the pair of parametric equations for the curve $\frac{x^2}{25} \frac{y^2}{9} = 1$

QUESTION FOUR (20 MARKS)

- a) Determine the distance between two parallell lines y = 4x 6 and the line y - 4x - 8 = 0(4 marks)
- b) The equation of a parabola is given by $y^2 + 8x 4y 4 = 0$.
 - What is the equation of the parabola in the form (i) $(y-k)^2 = 4a(x-h)$, where k, a and h are constants.

(4 marks)

- (ii) Determine the axis of the parabola (2 marks)
- Determine the focus and vertex of the parabola. (3 marks) (iii)
- Find the equation of the directrix and axis of symmetry of the (iv) parabola. (2 marks)
- (v) Determine the equation of a line parallel to the directrix and passes through the focus. (1 mark)
- c) Identify the conic sections given below

(i)
$$x^2 - \sqrt{5}xy + y^2 - 12x + 3y = 0$$

(ii)
$$r = \frac{4}{2 - \cos \theta}$$

(4 marks)

QUESTION FIVE (20 MARKS)

- a) Sketch and give the name of the polar curves $r = 1 + 3\cos\theta$ (6 marks)
- b) (i) A second degree curve is represented by the equation $4x^2 - 4xy + y^2 + 5\sqrt{5}x + 5 = 0$. By eliminating the cross product term give the new equation of the conic section on the new x'y' plane and state the equation of its axis. (8 marks)
 - (ii) On the new x'y' plane determine the foci and the equation of directrices of the conic section. (6 marks)