

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND

TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE/BACHELOR OF SCIENCE(ACTUARIAL SCIENCE WITH IT) 2ND YEAR 1STSEMESTER 2018/2019 ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: SMA 200 COURSE TITLE: CALCULUS I

EXAM VENUE:

STREAM:

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY 30 MARKS)

a) Evaluate
$$\int (x^2 + 3x + 2)dx$$
 (3 marks)
b) By using an appropriate technique evaluate $\int \sec x dx$ (4 marks)
c) Use the product rule for the derivative of the product uv to show that
 $\int v du = uv - \int u dv$ hence evaluate the definite integral $\int_{1}^{e} x^2 \ln x dx$. (7 marks)
d) Show that $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$ (6 marks)
e) Use a trigonometric substituition to evaluate product $\int \frac{1}{x^2 \sqrt{16 - x^2}} dx$
(6 marks)
f) Eva luate the integral $\int \sqrt{1 + \cos 4x} dx$ (4 marks)
OUESTION TWO (20 MARKS)

a) Show that $\int \cos^n x = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx$, hence or otherwise evaluate $\int \cos^3 x dx$ (9 marks)

b) By rewriting the denominator evaluate $\int \frac{1}{\sqrt{1+8x-4x^2}} dx$ (6 marks)

c) Use partial fractions to rewrite $\frac{x-11}{(x+5)(x+4)}$ hence evaluate $\int \frac{x-11}{(x+5)(x+4)} dx$ (5 marks)

QUESTION THREE (20 MARKS)

a) Find the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 2. (7 marks)

b) Use Simpson's rule to estimate the length of an arc $L = \int_{0}^{n} \sqrt{1 + \cos^{2} x} dx$, with n = 8. (6 marks) c) Find the power series for the function $f(x) = \ln(1+2x)$ (7 marks)

QUESTION FOUR (20 MARKS)

- a) Sketch the curve $y = x^2 x 2$ from x = -1 to x = 3, hence find the area enclosed by the curve the straight lines and the *x*-axis. (8 marks)
- b) The region bounded by the curve $y=9-x^2$ and the line y=3-x is rotated about the *x*-axis to generate a solid. Find the volume of the solid.

(6 marks)

c) Determine the lateral surface area of a cone generated by revolving a line segment x = 2y+4, $0 \le x \le 2$ about the y-axis. (6 marks)

QUESTION FIVE (20 MARKS)

- a) Evaluate $\int e^{ax} \sin bx dx$ (7 marks)
- b) Determine whether the series $\sum_{n=1}^{\infty} \frac{n^2(n+1)!}{n^2!}$ is convergent or divergent.
 - (6 marks)
- c) Evaluate the improper integral $\int_{-\infty}^{\infty} \frac{2x}{(x^2+1)^2} dx$ (7 marks)