JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
 UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION ARTS, SPECIAL EDUCATION AND EDUCATION SCIENCE $2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER 2018/2019 ACADEMIC YEAR REGULAR (MAIN)

COURSE CODE: SMA 210
COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY I
EXAM VENUE: STREAM: (B.e.d ARTS, SPECIAL ed. \& B.ed SCIENCE)

DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a) Let X and Y have a bivariate probability density function given by

$$
f(x, y)=\left\{\begin{array}{cc}
3 / 2 x^{2} & 0 \leq x \leq 2 ; 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Obtain marginal densities of X and Y .
(4 Marks)
b) Suppose that the joint probability distribution function of X and Y is

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{3}{16}(4-2 x-y) & x>0 ; y>0 ; 2 x+y<4 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine:
i. The conditional probability density function of Y given X .
ii. Compute $\operatorname{Pr}[Y \geq 2 / X=0.5]$
c) Outline TWO properties of covariance of two random variables.
d) Suppose that X and Y are random variables of $\operatorname{var}(X)=9, \operatorname{var}(Y)=4$ and $\rho_{X Y}=-\frac{1}{6}$. Determine:

$$
\begin{array}{ll}
\text { i. } & \operatorname{var}(X+Y) \\
\text { ii. } & \operatorname{var}(X-3 Y+4) \tag{2Marks}
\end{array}
$$

(2 Marks)
e) Given that X_{1} and X_{2} are random variables with joint probability distribution function given by

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
x_{1}+x_{2} & 0<x_{1}<1,0<x_{2}<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine whether or not X_{1} and X_{2} are independent.
f) Consider a two dimensional random variable $\left(X_{1}, X_{2}\right)$ having a density function given by

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
8 x_{1} x_{2} & 0 \leq x_{1} \leq 1 ; 0 \leq x_{2} \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute:
i. $\quad E\left(3 X_{1}+2 X_{2}\right)$
ii. $E\left(X_{1} X_{2}\right)$

QUESTION TWO (20 MARKS)

a) Suppose that X is a random variable such that $0<\delta_{X}^{2}<\infty$ and that $Y=a X+b$ for some constant a and b where $a \neq 0$. Show that if $a>0$ then $\rho_{X Y}=1$ and if $a<0$ then $\rho_{X Y}=-1$
b) Describe the regression between X and Y from a joint probability distribution function given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{2} x y & 0<y<x: 0<x<2 \tag{16Marks}\\
0 & \text { otherwise }
\end{array}\right.
$$

QUESTION THREE (20 MARKS)

a) Show that the moment generating function of a bivariate normal distribution is given by

$$
\begin{equation*}
m\left(t_{1}, t_{2}\right)=\exp \left\{t_{1} \mu_{x}+t_{2} \mu_{y}+1 / 2\left[t_{1}^{2} \delta_{x}^{2}+2 \rho t_{1} t_{2} \delta_{x} \delta_{y}+t_{2}^{2} \delta_{y}^{2}\right]\right\} \tag{10Marks}
\end{equation*}
$$

b) Show that if X and Y are random variables with a bivariate normal distribution, then $E(X)=\mu_{x}, E(Y)=\mu_{y}, \operatorname{var}(X)=\delta_{x}^{2}, \operatorname{var}(Y)=\delta_{y}^{2}$ and $\operatorname{cov}(X Y)=\rho \delta_{x} \delta_{y} \quad$ (10 Marks)

QUESTION FOUR (20 MARKS)

a) Consider two independent random variables X_{1} and X_{2} both coming from a population with probability density function

$$
f(x)=\left\{\begin{array}{cc}
1 & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Suppose we define two other random variables $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$. Obtain;
i. the joint probability distribution of Y_{1} and Y_{2}
ii. the marginal probability distribution function Y_{1}
b) Define a Beta distribution.
c) Obtain the mean and variance of a Beta distribution.

QUESTION FIVE (20 MARKS)

Suppose that X_{1} and X_{2} are jointly distributed random variables with probability distribution function given by

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{8}\left(x_{1}+x_{2}\right) & 0 \leq x_{1} \leq 2 ; 0 \leq x_{2} \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute the coefficient of correlation between X_{1} and X_{2}

