

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL

3ST YEAR 1ST SEMESTER 2018/2019 ACADEMIC YEAR

MAIN REGULAR

COURSE CODE: SMA 301 COURSE TITLE: ODE

EXAM VENUE: STREAM: (BSc. Actuarial)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions

- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) (30 marks)

- a) Determine:
 - i) the order,
 - ii) the degree,
 - iii) the unknown function, and
 - iv) the independent variable

for differential equation

$$\left(\frac{d^4y}{dx^4}\right)^2 + x^3 \left(\frac{d^3y}{dy^3}\right)^5 = \sin x \quad (4 \text{ marks})$$

b) Find the values of c_1 and c_2 so that the given function satisfies the given prescribed initial conditions:

$$y(x) = c_1x + c_2 + x^2 - 1$$
; $y(1) = 1$, $y'(1) = 2$ (6 marks)

- c) Show that the solution of the equation y'' + y = 0 is $y = c_1 \sin x + c_2 \cos x$, where c_1 and c_2 are arbitrary constants(4 marks)
- d) Form the differential equation representing the family curves $y = a \cos(x+b)$ (4 marks)
- e) Solve $(x+2)\frac{dy}{dx} = x^2 + 4x 5$. (4 marks)
- f) Show that a separable first order differential is always exact. (4 marks)
- g) A certain city had a population of 200000 in 1970 and a population of 350000 in 1980. Assume that its population will continue to grow exponentially at a constant rate. What populations can its city planners expect in the year 2020? (4 marks)

QUESTION TWO (20 marks)

a) Solve the following differential equation

$$\cos^2 x \frac{dy}{dx} + y = \tan x$$
 (6marks)

b) Solve the initial value problem:

$$y'' + 2y' = te^{-t}$$
; $y(0) = 6$, $y'(0) = -1$.

State the largest interval in which the solution is guaranteed to uniquely exist. (7marks)

c) Solve the initial value problem

$$y'' - y' - 2y = 0$$
, $y(0) = 2$, $y'(0) = 7$. (7 marks)

QUESTION THREE (20 marks)

- a) Determine whether or not $\frac{y}{x}dx + (y^3 + \ln x)dy = 0$ is exact. If exact, find the solution. (7marks)
- b) Find the solution of the given differential equation:

$$y' + 2y = y^2 e^x$$
; $y(0) = 2$ (6marks)

c) Show that

$$(x^2 + 2xy - y^2)dx + (y^2 + 2xy - x^2)dy = 0; y(1) = -1$$

is homogeneous and find its solution. (7 marks)

QUESTION FOUR (20 marks)

- a) Solve the initial-value problem using the method of undetermined coefficients $y'' 3y' 4y = -8e^t \cos 2t$, y(0) = 1, y'(0) = 2. (12 marks)
- b) Solve the differential equation using the method of variation of parameters

$$4y'' - 4y' + y = 16e^{\frac{t}{2}}$$
 (8 marks)

QUESTION FIVE (20 marks)

a) A particle moves vertically under the force of gravity against air resistance Kv^2 , where K is a constant. The velocity at any time is given by the differential equation

$$\frac{dv}{dt} = g - Kv^2$$

If the particle starts off from rest, show that

$$v = \frac{\lambda \left(e^{2\lambda kt} - 1 \right)}{\left(e^{2\lambda kt} + 1 \right)}$$

Such that $\lambda = \sqrt{\frac{g}{K}}$. Then find the velocity as the time approaches infinity. (10 marks)

b) Equation $y'' + 9y = 14 \sin 4t$ describes a spring block system that is driven by an oscillatory external for $f(t) = 14 \sin 4t$ in the absence of friction. If the block has an initial position y(0) = 4 and an initial velocity y'(0) = 1. Find the solution of the initial value problem. (10 marks)