JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL $3^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2018/2019 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SMA 301

EXAM VENUE:
DATE:

TIME: 2.00 HOURS
Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) (30 marks)

a) Determine:
i) the order,
ii) the degree,
iii) the unknown function, and
iv) the independent variable
for differential equation
$\left(\frac{d^{4} y}{d x^{4}}\right)^{2}+x^{3}\left(\frac{d^{3} y}{d y^{3}}\right)^{5}=\sin x \quad(4$ marks $)$
b) Find the values of c_{1} and c_{2} so that the given function satisfies the given prescribed initial conditions:

$$
y(x)=\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}+\mathrm{x}^{2}-1 ; \quad y(1)=1, \quad y^{\prime}(1)=2 \quad(6 \text { marks })
$$

c) Show that the solution of the equation $y^{\prime \prime}+y=0$ is $y=c_{1} \sin x+c_{2} \cos x$, where c_{1} and c_{2} are arbitrary constants(4 marks)
d) Form the differential equation representing the family curves

$$
y=a \cos (\mathrm{x}+\mathrm{b}) \quad(4 \text { marks })
$$

e) $\operatorname{Solve}(x+2) \frac{d y}{d x}=x^{2}+4 x-5 .(4$ marks $)$
f) Show that a separable first order differential is always exact.
g) A certain city had a population of 200000 in 1970 and a population of 350000 in 1980. Assume that its population will continue to grow exponentially at a constant rate. What populations can its city planners expect in the year 2020 ?
(4 marks)

QUESTION TWO (20 marks)

a) Solve the following differential equation

$$
\cos ^{2} x \frac{d y}{d x}+y=\tan x \text { (6marks) }
$$

b) Solve the initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}=t e^{-t} ; \quad y(0)=6, \quad y^{\prime}(0)=-1
$$

State the largest interval in which the solution is guaranteed to uniquely exist. (7marks)
c) Solve the initial value problem

$$
y^{\prime \prime}-y^{\prime}-2 y=0, \quad y(0)=2, y^{\prime}(0)=7 .(7 \text { marks })
$$

QUESTION THREE (20 marks)

a) Determine whether or not $\frac{y}{x} d x+\left(y^{3}+\ln x\right) d y=0$ is exact. If exact, find the solution. (7marks)
b) Find the solution of the given differential equation:

$$
y^{\prime}+2 y=y^{2} e^{x} ; y(0)=2(6 \mathrm{marks})
$$

c) Show that
$\left(x^{2}+2 x y-y^{2}\right) d x+\left(y^{2}+2 x y-x^{2}\right) d y=0 ; y(1)=-1$
is homogeneous and find its solution. (7 marks)

QUESTION FOUR (20 marks)

a) Solve the initial-value problem using the method of undetermined coefficients

$$
y^{\prime \prime}-3 y^{\prime}-4 y=-8 e^{t} \cos 2 t, \quad y(0)=1, \quad y^{\prime}(0)=2 .(12 \text { marks })
$$

b) Solve the differential equation using the method of variation of parameters

$$
4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{\frac{t}{2}}(8 \text { marks })
$$

QUESTION FIVE (20 marks)

a) A particle moves vertically under the force of gravity against air resistance $K v^{2}$, where K is a constant. The velocity at any time is given by the differential equation

$$
\frac{d v}{d t}=g-K v^{2}
$$

If the particle starts off from rest, show that

$$
v=\frac{\lambda\left(e^{2 \lambda k t}-1\right)}{\left(e^{2 \lambda k t}+1\right)}
$$

Such that $\lambda=\sqrt{\frac{g}{K}}$. Then find the velocity as the time approaches infinity. (10 marks)
b) Equation $y^{\prime \prime}+9 y=14 \sin 4 t$ describes a spring block system that is driven by an oscillatory external for $f(t)=14 \sin 4 t$ in the absence of friction. If the block has an initial position $y(0)=4$ and an initial velocity $y^{\prime}(0)=1$. Find the solution of the initial value problem. (10 marks)

