

## JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE

# ACTUARIAL

## 4th YEAR 1st SEMESTER 2018/2019 ACADEMIC YEAR

## MAIN REGULAR

COURSE CODE: SAS 401

## **COURSE TITLE: FURTHER DISTRIBUTION THEORY**

**EXAM VENUE:** 

**STREAM: (Bsc. Actuarial Science)** 

DATE:

EXAM SESSION: SEP-DEC 2018

#### TIME: 2.00 HOURS

#### **Instructions:**

- (i) Answer questions one and any other two.
- (ii) Candidates are advised not to write on the question paper.
- (iii) Candidates must hand in their answer booklets to the invigilator while in the examination room.

# **Question One (20 mks)**

- a) A car dealer knows from experience that out of 20 vehicles sold, 15% will have insignificant defects, 60% will be fairly damaged and 25% will have severe defects. He wants to determine the probability that out of 20 Vehicles
  - i) A maximum of 8 will be severely damaged (Hint: p=0.25) (4 mks)
  - ii) At least 12 will have moderate defects (Hint: p=0.6) (4 mks)

|        | Number of group<br>Members in a<br>Committee |               |     |
|--------|----------------------------------------------|---------------|-----|
| Gender | Nominated                                    | Non nominated |     |
| Male   | X                                            | m-x           | m   |
| Female | r-x                                          | n-(r-x)       | n   |
| Total  | r                                            | m+n-r         | m+n |

b) Consider the data in the table below

- i) Obtain the probability of including a given number of males in the committee p(X=x) (3 mks)
- ii) Obtain E(X) (3 mks)

(3 mks)

- iii) Obtain Var(X)
- c) Suppose

$$f(x,y) = \begin{cases} (x+y); & 0 \le x \le 1; \ 0 \le y \le 1 \\ 0; & Otherwise \end{cases}$$

Obtain
$$(3 \text{ mks})$$
i) $Cov(X, Y)$  $(3 \text{ mks})$ ii) $Cor(X, Y)$  $(4 \text{ mks})$ 

Assuming X and Y are conditionally independent

d) Let X have a density function

$$f(x) = \begin{cases} e^{-x} ; & x > 0 \\ 0 ; & Otherwise \end{cases}$$

Find the new density function of a random variable  $Y=X^2$ 

#### **Question Two (20 mks)**

Consider

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}; \quad -\infty < x \infty; \quad -\infty < \mu \infty$$

Use moment generating technique to obtain

i) 
$$E(X)$$
 (10 mks)  
ii)  $Var(X)$  (10 mks)

(6 mks)

# **Question Three (20 mks)**

Suppose that a joint pdf of two random variables X and Y is as follows

$$f(x, y) = \begin{cases} c(x^2 + y); & for \ 0 < y \le (1 - x^2) \\ 0; & Otherwise \end{cases}$$

Determine

a) Value of the constant c (4 mks)

b) Cov(X, Y) (4 mks)

| c) | Pearson $cor(X, Y)$                 | (4 mks) |
|----|-------------------------------------|---------|
| d) | Regression equation between X and Y | (4 mks) |

e) Obtain coefficient of determination and interpret the fit statistic (4 mks)

## **Question Four (20 mks)**

Describe the regression between x and y from font distribution function given by

$$f(x, y) = \begin{cases} 2xy; & 0 < y < x; \ 0 < x < 2\\ 0; & 0 \text{ therwise} \end{cases}$$

Obtain

| i)   | Cov(X, Y)                                                           | (4 mks) |
|------|---------------------------------------------------------------------|---------|
| ii)  | The correlation coefficient                                         | (4 mks) |
| iii) | The regression equation between X and Y                             | (4 mks) |
| iv)  | Interpret the regression parameters                                 | (4 mks) |
| v)   | Sketch a scatter diagram between X and Y including line of best fit | (4 mks) |

# Question Five (20 mks)

Let  $X_{1,}X_{2,}..., X_{n,}$  be a random variables such that  $X_{i} x^{2}(r_{i})$ ; i = 1, 2, ..., n Let each  $X_{i,}$ and  $X_{j,}$  be independent. Obtain joint pdf of  $X_{i1,}$  and  $X_{2,}$ , hence of

$$f = \frac{x_1/r_1}{x_2/r_2} \qquad \{0 < x_i < \infty \qquad \forall \qquad i = 1, \cdots, n\}$$