JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR THE DIPLOMA IN COMMUNITY HEALTH FIRST YEAR $1^{\text {ST }}$ SEMESTER 2018/2019 ACADEMIC YEAR

```
COURSE CODE: SMA 2111
COURSE TITLE: MATHEMATIC I
EXAM VENUE:
STREAM: DIPLOMA IN COMMUNITY HEALTH
DATE:
```

\qquad

```
    EXAM SESSION
    .............................
    TIME:
    2 HOURS
```


Instructions:

1. Answer all questions 1 and any other 2 questions.
2. Candidates are advised not to write on the question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE

a) Let $U=\{a, b, c, d, e, f, g, h\}$ be the universal set, $A=\{a, b, h\}, B=\{c, d, g, h\}$ and $C=\{a, b, e, f h\}$.
i) $A \cap B$
(2 marks)
ii) $A \cup B \cup C$
(2 marks)
iii) A^{c}
(2 marks)
iv) $\operatorname{Card}(B)$
(1 marks)
v) $\mathrm{P}(\mathrm{A})$
b) Using the figures in the table below. Estimate
(i). Mean
(ii). Median
(iii). Modal Class

Class	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
frequency	25	40	36	30	20	15

c) Write each of the logarithmic equations into exponential form (2 marks)
i) $\quad \log _{5}^{125}=3$
ii) $\quad \log _{10}^{100}=2$
d) Given $\tan \theta=\frac{12}{5}$. Find $\cos \theta$ and $\sin \theta$
e) Use binomial theorem to expand $(X+2)^{5}$

QUESTION TWO

a) Find the length of the arc of a circle of radius 2 meters subtended by central angle 303^{0}
(3 marks)
b) Convert each angle into radians
(2 marks)
i) $\quad 107^{0}$
ii) $\quad-90^{0}$
c) Without using a calculator $6 \tan 45^{\circ}-8 \cos 60^{\circ}$. (4 marks)
d) Find the power set of $A=\{a, b, c\}$
e) Write down the first three terms of the sequence
(i) $\quad b_{n}=\frac{1}{3^{n-1}}$
(ii) $\quad d_{n}=n^{2}$
(iii) $\quad(-1)^{n} \cdot n$
f) Expand $(2 x+3)^{5}$

QUESTION THREE

a) Convert each angle in radians to degrees
i) $\frac{-\pi}{4}$
ii) $\frac{-5 \pi}{6}$
iii) 4π
b) Given the $\operatorname{Sin} \theta=\frac{1}{3}$ and θ is acute angle. Find the exact value of $\operatorname{Cos} \theta$ and $\tan \theta$.
c) Complete the table below

Radians	Degrees	$\operatorname{Sin} \theta$	$\operatorname{Cos} \theta$	(4 marks) $(4$ marks)
$\frac{\pi}{6}$		$\frac{1}{2}$		$\tan \theta$
$\frac{\pi}{4}$				
			$\frac{\sqrt{3}}{2}$	1

d) Use quadratic formula to evaluate $9 x^{2}-6 x+1=0$
(4 marks)
e) Rationalize $\frac{\sqrt{2}+3}{\sqrt{3-\sqrt{2}}}$
f) Evaluate
(2 marks)
i) $\quad{ }^{6} C_{3}$
ii) ${ }^{5} C_{2}$

QUESTION FOUR

a) To save her daughter's college education Ms. Miranda decides to put ksh. 5,000 aside every month in a credit union paying 10% interest compounded monthly. She thus begins savings program when her daughter is 3 years old.
i) How much will she have saved by the time she makes $180^{\text {th }}$ deposit. (3marks)
ii) How old is her daughter at the time.
(2 marks)
b) Evaluate.
(2 marks)
i) $\quad{ }^{3} P_{2}$
ii) $\quad{ }^{7} P_{3}$
c) Use binomial theorem to evaluate $(x+2)^{4}$. (4marks)
d) In how many ways can a committee of 2 faculty members and 3 students be formed if 6 faculty members and 10 students are eligible to serve in the committee. (3marks)
e) Simplify $\left(2 x^{3}\right) \times 5 x^{4} / 2^{2} \times 5^{2}$
f) Given the geometric sequence; $1,3,9, \ldots$

Find (i) The common ratio.
(ii) The $10^{\text {th }}$ term of the sequence.

QUESTION FIVE

a) The eight term of arithmetic sequence is 8 and the twentieth term is 44 . (5 marks)
i) Find the first term
ii) Common difference
iii) Find the sum of the first twenty terms of the sequence
b) Given $f(x)=x^{2}+5 x, g(x)=\frac{3 x}{x^{2}-4}$. Find
i) $\quad f(2)$
ii) $\quad g(3)$
iii) $\quad f g(x)$
c) Solve the equation $(2 y+1)(y-1)=(y+5)(2 y-5)$ marks)
d) Express in logarithm form
i) $\quad a^{m}=n$
ii) $\quad 2^{4}=16$
e) Solve $2 y^{2}-3 y-1=0$

