JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF SPATIAL PLANNING
 UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHEALOR OF ARTS IN SPATIAL PLANNING

SEMESTER 2018/2019 ACADEMIC YEAR

CENTRE: MAIN CAMPUS

COURSE CODE: PSP 3122
COURSE TITLE: SURVEYING

EXAM VENUE:
STREAM: SPATIAL PLANNING

DATE: 29/4/19
EXAM SESSION: 9.00-11.00AM
TIME: 2 HOURS
Instructions:

1. Answer question 1 (compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTIONS ONE

a) Define the following terms in relation to surveying.
i) Geodetic surveying
ii) Plain tabling
iii) Tape and offset surveying
iv) Tacheometric surveying
v) Trigonometric heighting
[2 marks]
[2 marks]
[2 marks]
[2 marks]
[2 marks]
b) Given that the reduced level at A is 1978.04 m above mean sea level, while staff readings at A and B is 2.150 and 1.385 respectively. By use of a sketch, determine height of point B [6 marks]
c) Explain how horizontal distance is achieved in electromagnetic distance measurement.[8 marks]
d) Describe the basic principles to be observed during any surveying measurement assignments. [6 marks]

QUESTION TWO

a) With the use of sketches, differentiate between horizontal and vertical angles [6 marks]
b) An open traverse was run between points X and Y to control setting up of a road section as per the table below

Line	WCB	Distance (m)
X-S1	650000	25.707
S1-S2	3381550	22.861
S2-Y	724700	53.221

Given the coordinate of X is 500.000 mE and 500.000 mN . Calculate the coordinate of S1, S2 and Y [14 marks]

QUESTION THREE

a) Describe the following terminologies as used in leveling
i. Level line
ii. Height of collimation
[2 marks]
[2 marks]
iii. Bench mark
[2 marks]
iv. Backsight
[2 marks]
b) The below table shows the level field notes for profile leveling along a centerline of a waterline. Determine the reduced level using Rise and Fall Method, carrying out all necessary calculations and checks. Take reduced level of A as 2000.00 m amsl.[12 marks]

B.S.	I.S	F.S	Reduced Level	Distance	Remarks
1.360			2000.000	0.00	A
	1.720			20.00	P 1
0.345		3.090		40.00	P 2
	0.670			60.00	P 3
	1.870			80.00	P 4
0.680		2.380		100.00	P 5
	1.320			120.00	P 6
	1.765			140.00	P 7
		2.170		160.00	B

QUESTION FOUR

a) Briefly describe the contribution of Surveying and Geomatics to Kenyan development. [8 marks]
b) Explain techniques of measuring area of an irregular shaped parcel of land allocated for dam construction. [12 marks]

QUESTION FIVE

a) Outline different ways of achieving offset (right angle) during tape and offset surveying fieldwork. [8 marks]
b) Explain how distance measurement under the following conditions can be achieved.
i) Level ground
ii) Gently sloping ground
iii) Uneven ground
[4 marks]
[4 marks]
[4 marks]

