JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITY EXAMINATION FOR DEGREE OF B ACHELOR OF SCIENCE IN ACTUARIAL SCIENCE
$4^{\text {TH }}$ YEAR $2^{\text {ND }}$ SEMESTER 2018/2019 ACADEMIC YEAR
MAIN REGULAR

COURSE CODE: SAC 406
COURSE TITLE: RISK AND CREDIBILITY THEORY

EXAM VENUE:
STREAM: (BSc. Actuarial)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS
Instructions:

1. Ans wer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their ans wer booklets to the invigilator while in the examination room.

QUESTION 1 [COMPULSORY] [30 Marks]

(a) Define partial and full credibility.
(b)Each of r independent risks has a probability 0.25 that a claim is made in a year and 0.75 that no claim is made. Claim sizes are independent with mean 500 and variance 125 . Determine the expected value and the variance of the total claimed in a year.
[8 Marks] (c)The number of claims per month Y arising on a certain portfolio of insurance policies is to be modelled using a modified geometric distribution with probability density given by

$$
p(y \mid \alpha)=\frac{\alpha^{y-1}}{(1+\alpha)^{y}}, y=1,2,3, \ldots \ldots
$$

where is an unknown positive parameter. The most recent four months have resulted in claim numbers of $8,6,10$ and 9 .

Derive the maximum likelihood estimate of α.
[4 Marks]
(d)The number of claims per month are independent Poisson random variables with mean λ and the prior distribution for λ is exponential with mean 0.2. Determine the posterior distribution for λ given the observed values $x_{1}, x_{2}, \ldots, x_{n}$ of the number of claims in n months and hence the Bayesian estimate of λ under the quadratic loss.
[6 Marks] (e)A sample of 100 claims on a general insurance in respect to a certain class of business has a mean of 1216 and variance 362,944 . The claim frequency rate is about 0.015 . Calculate the minimum size of the portfolio if full credibility ($k=0.05, p=0.9$) is to be assigned to the experience.

QUESTION 2[20 MARKS]

The last ten claims(in shillings) under a particular class of insurance policy were

$$
1330,201,111,2368,617,309,35,4685,442,843
$$

(a)Assuming that claims came from a lognormal distribution with parameters μ and σ, derive the formular for the maximum likelihood estimate of these parameters and estimate the parameters using the observed data.
[12 Marks]
(b)Assuming that the claim come from a Pareto distribution with parameters α and λ, use the method of moments to estimate these parameters.

[8 Marks]

QUESTION 3 [20 MARKS]

Claims arrive in a Poisson process at rate λ, and $N(t)$ is the number of claims arriving at time t. The claim amounts are independent random variables X_{1}, X_{2}, \ldots, with mean μ, independent of the arrival process.

The initial surplus is U and the premium loading factor is θ.
(a)Give an expression for the surplus process $U(t)$ at time t.
[3 Marks]
(b)Define the probability of ruin with the initial surplus $U, \Psi(u)$. State the value of $\Psi(u)$ when $\theta=0$. (c)Comment on the statement "As the value of λ increases the probability of ruin must also increase". (d)A particular portfolio of insurance policies gives rise to aggregate claims which follow a Poisson process with parameter $\lambda=25$. The distribution of individual claim amounts is as follows:

Claim	50	100	200
Probability	30%	50%	20%

The insurer initially has a surplus of 240. Premiums are paid annually in advance. Calculate approximately the smallest premium loading such that the probability of ruin in the first year is less than 10%.
[10 Marks]

QUESTION 4[20 MARKS]

The table below shows aggregate annual claim statistics for three risks over a period of seven years. Annual aggregate claims for risk i in year j are denoted by $X_{i, j}$.

Risk i	$\bar{X}=\frac{1}{7} \sum_{j=1}^{7} X_{i j}$	$S_{i}^{2}=\frac{1}{6} \sum_{j=1}^{7}\left(X_{i j}-\bar{X}_{i}\right)^{2}$
1	127.9	335.1
2	88.9	65.1
3	149.7	33.9

(a) Calculate the credibility premium of each risk under the assumptions under the assumptions of EBCT model 1.
[15 Marks]
(b)Explain why the credibility factor is high in this case.
[5 Marks]

QUESTION 5 [20 MARKS]

The total claim amount per annum on a particular insurance policy follows a normal distribution with unknown mean θ and variance 200^{2}. Prior belief about θ are described by a normal distribution with mean 600 and variance 50^{2}.Claim amounts $x_{1}, x_{2}, \ldots, x_{n}$ are observed over n years.
(a) State the posterior distribution of θ.
[6 Marks]
(b) Show that the mean of the posterior distribution θ can be written in the form of a credibility estimate.
[8 Marks]
(c) Now suppose that $n=5$ and that the total claim amounts over the five years were 3400 . Calculate the posterior probability that θ is greater than 600.
[6 Marks]

