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OASIS OF KNOWLEDGE



QUESTION ONE

(a) Define the following terms as used in actuarial mathematics;

i. efficient frontier

ii. indifference curve

iii. optimal portfolio. [3 marks]

(b) Explain the four axioms that are required to derive the expected utility theorem. [6 marks]

(c) Consider the two risky assets, A and B, with cumulative probability distribution functions:

FA(w) = w

FB(w) = w0.5

In both cases, 0 ≤ w ≤ 1.

i. Show that A is preferred to B on the basis of first-order stochastic dominance. [3 marks]

ii. Verify explicitly that A also dominates B on the basis of second-order stochastic dominance.
[3 marks]

(d) State the other assumptions underlying the Black-Scholes model. [5 marks]

(e) Consider a zero-coupon corporate bond that promises to pay a return of 10% next period.
Suppose that there is a 10% chance that the issuing company will default on the bond payment,
in which case there is an equal chance of receiving a return of either 5% or 0%. Calculate values
for the following measures of investment risk:

i. downside semi-variance

ii. shortfall probability based on the risk-free rate of return of 6%

iii. the expected shortfall below the risk-free return conditional on a shortfall occurring.
[ 5 marks]

(f) An investor can invest in only two risky assets A and B. Asset A has an expected rate of return
of 10% and a standard deviation of return of 20%. Asset B has an expected rate of return of
15% and a standard deviation of return of 30%. The correlation coefficient between the returns
of Asset A and the returns of Asset B is 0.6.

i. What is the expected rate of return if 20% of an investors wealth is invested in Asset A and
the remainder is invested in Asset B? [2 mark]

ii. What is the standard deviation of return on the portfolio if 20% of an investors wealth is
invested in Asset A and the remainder is invested in Asset B? [2 marks]

QUESTION TWO

2



(a) Let St be a geometric Brownian motion process defined by the equation St = exp(µ t + σWt),
where t W is a standard Brownian motion and m and s are constants.

i. Write down the stochastic differential equation satisfied by Xt = ln St . [2 marks]

ii. By applying Itos Lemma, or otherwise, write down the stochastic differential equation sat-
isfied by St . [3
marks]

iii. The price of a share follows a geometric Brownian motion with µ = 0.06 and σ = 0.25 (both
expressed in annual units). Find the probability that, over a given one-year period, the share
price will fall.
[3 marks]

(b) Two investments are available. A risk-free investment B that returns 1%, and an investment A
whose return is given by:

RA =

{
−1%, prob 0.5;
3%, prob 0.5.

i. Explain why Asset B must be second-order stochastically dominant over Asset A in terms
of investors and utility functions. [2 marks]

ii. Verify numerically the second-order stochastic dominance expressed in part (i). [2 marks]

(c) Show that the following utility functions have constant relative risk aversion co-efficient

i. u(x) = ln x [3 marks]

ii. u(x) = αxα [3 marks]

QUESTION THREE

(a) An investor is contemplating an investment with a return of Ksh R, where:

R = 250, 000 − 100, 000N

and N ∼ N [1, 1] random variable. Calculate each of the following measures of risk:

i. variance of return [3 marks]

ii. downside semi-variance of return [3 marks]

iii. shortfall probability, where the shortfall level is 50,000 [3 marks]

iv. Value at Risk at the 5% level [3 marks]

(b) Claims arrive according to a Poisson process. Individual claim sizes are independent with density:

f(x) = xe−x, x > 0

and the insurer uses a premium loading factor of θ.
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i. Derive the equation for the adjustment coefficient for this process. [2 marks]

ii. If θ = 0.4, calculate the adjustment coefficient, and determine an upper bound for the
probability of ultimate ruin if the initial surplus is 50. [4 marks]

QUESTION FOUR

(a) Claims arrive in a Poisson process rate , and the claim severity distribution has mean and moment
generating function M(t). The premium income per unit time is c where c > λµ.

i. Write down an equation satisfied by the adjustment coefficient. [1 mark].

ii. Derive the adjustment coefficient in terms of λ, µ and c, when the claims are exponentially
distributed with mean. [2 marks]

iii. Calculate the adjustment coefficient Rexp when µ = 100 and the premium loading factor is
25%. [3 marks]

iv. State Lundberg’s inequality for the probability of ruin with initial capital µ. [2 marks]

v. Determine and comment on the effect on Rexp if the mean claim size is increased but the
premium loading factor remains the same. [2 marks]

vi. Determine and comment on the effect on Rexp if instead the premium loading factor is
increased but the mean claim size stays the same. [1 mark]

(b) Consider security A, which has a standard deviation of 4%. If the standard deviation of the
market return is 5%. The correlation between A′s return and that of the market is 0.75. The
risk-free rate is 5% and the expected return on the market is 10%. Calculate

i. the beta of security A. [3 marks]

ii. security A′s expected return. [3 marks]

(c) An insurer knows from past experience that the number of claims received per month has a
Poisson distribution with mean 15 and that claim amounts have exponential distribution with
mean 500. The insurer uses a security loading factor of 30%. calculate the insurer’s adjustment
coefficient and the probability of ruin if the initial surplus was 1000. [3 marks]

QUESTION FIVE

(a) The Capital Asset Pricing model is assumed to hold in a particular investment market.The total
return on a unit invested in asset A in this market has mean 1.15 and standard deviation 0.10.
The return on a unit invested risk free is 1.05 and the expected return on a unit invested in the
market portfolio is 1.08. You are given that A is an efficient portfolio.

i. Find the equation for the capital market line. [3 marks]

ii. Calculate the standard deviation of the return on the market portfolio. [3 marks]
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iii. Calculate the β for asset A. [5 marks]

(b) State the assumptions of CAPM [5 marks]

(c) Investor A has an initial wealth of 100 and a utility function of the form U(w) = ln(w).
Investor Z offers her a return of −18% or + 20% with equal probability.

i. What is her expected utility if she invests nothing in investment Z? [2 marks]

ii. What is her expected utility if she invests entirely in investment Z? [2 marks]
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