JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
 UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
 ACTUARIAL
 $4^{\text {TH }}$ YEAR $2^{\text {ND }}$ SEMESTER 2018/2019 ACADEMIC YEAR
 REGULAR (MAIN)

COURSE CODE: SAC 408
COURSE TITLE: RISK MATHEMATICS
EXAM VENUE:
STREAM: (BSc. Actuarial)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE

(a) Define the following terms as used in actuarial mathematics;
i. efficient frontier
ii. indifference curve
iii. optimal portfolio.
(b) Explain the four axioms that are required to derive the expected utility theorem. [6 marks]
(c) Consider the two risky assets, A and B , with cumulative probability distribution functions:

$$
\begin{gathered}
F_{A}(w)=w \\
F_{B}(w)=w^{0.5}
\end{gathered}
$$

In both cases, $0 \leq w \leq 1$.
i. Show that A is preferred to B on the basis of first-order stochastic dominance. [3 marks]
ii. Verify explicitly that A also dominates B on the basis of second-order stochastic dominance. [3 marks]
(d) State the other assumptions underlying the Black-Scholes model.
(e) Consider a zero-coupon corporate bond that promises to pay a return of 10% next period. Suppose that there is a 10% chance that the issuing company will default on the bond payment, in which case there is an equal chance of receiving a return of either 5% or 0%. Calculate values for the following measures of investment risk:
i. downside semi-variance
ii. shortfall probability based on the risk-free rate of return of 6%
iii. the expected shortfall below the risk-free return conditional on a shortfall occurring. [5 marks]
(f) An investor can invest in only two risky assets A and B. Asset A has an expected rate of return of 10% and a standard deviation of return of 20%. Asset B has an expected rate of return of 15% and a standard deviation of return of 30%. The correlation coefficient between the returns of Asset A and the returns of Asset B is 0.6.
i. What is the expected rate of return if 20% of an investors wealth is invested in Asset A and the remainder is invested in Asset B?
ii. What is the standard deviation of return on the portfolio if 20% of an investors wealth is invested in Asset A and the remainder is invested in Asset B?
[2 marks]

QUESTION TWO

(a) Let S_{t} be a geometric Brownian motion process defined by the equation $S_{t}=\exp \left(\mu t+\sigma W_{t}\right)$, where t W is a standard Brownian motion and m and s are constants.
i. Write down the stochastic differential equation satisfied by $X_{t}=\ln S_{t}$.
[2 marks]
ii. By applying Itos Lemma, or otherwise, write down the stochastic differential equation satisfied by S_{t}. marks]
iii. The price of a share follows a geometric Brownian motion with $\mu=0.06$ and $\sigma=0.25$ (both expressed in annual units). Find the probability that, over a given one-year period, the share price will fall.
[3 marks]
(b) Two investments are available. A risk-free investment B that returns 1%, and an investment A whose return is given by:

$$
R_{A}= \begin{cases}-1 \%, & \text { prob 0.5 } \\ 3 \%, & \text { prob 0.5 }\end{cases}
$$

i. Explain why Asset B must be second-order stochastically dominant over Asset A in terms of investors and utility functions.
ii. Verify numerically the second-order stochastic dominance expressed in part (i). [2 marks]
(c) Show that the following utility functions have constant relative risk aversion co-efficient
i. $u(x)=\ln x$
[3 marks]
ii. $u(x)=\alpha x^{\alpha}$
[3 marks]

QUESTION THREE

(a) An investor is contemplating an investment with a return of Ksh R, where:

$$
R=250,000-100,000 N
$$

and $N \sim N[1,1]$ random variable. Calculate each of the following measures of risk:
i. variance of return
ii. downside semi-variance of return
iii. shortfall probability, where the shortfall level is 50,000
iv. Value at Risk at the 5% level
(b) Claims arrive according to a Poisson process. Individual claim sizes are independent with density:

$$
f(x)=x e^{-x}, x>0
$$

and the insurer uses a premium loading factor of θ.
i. Derive the equation for the adjustment coefficient for this process.
ii. If $\theta=0.4$, calculate the adjustment coefficient, and determine an upper bound for the probability of ultimate ruin if the initial surplus is 50 .
[4 marks]

QUESTION FOUR

(a) Claims arrive in a Poisson process rate, and the claim severity distribution has mean and moment generating function $M(t)$. The premium income per unit time is c where $c>\lambda \mu$.
i. Write down an equation satisfied by the adjustment coefficient.
[1 mark].
ii. Derive the adjustment coefficient in terms of λ, μ and c, when the claims are exponentially distributed with mean.
[2 marks]
iii. Calculate the adjustment coefficient $R_{\exp }$ when $\mu=100$ and the premium loading factor is 25%.
[3 marks]
iv. State Lundberg's inequality for the probability of ruin with initial capital μ. [2 marks]
v. Determine and comment on the effect on $R_{\text {exp }}$ if the mean claim size is increased but the premium loading factor remains the same.
[2 marks]
vi. Determine and comment on the effect on $R_{\text {exp }}$ if instead the premium loading factor is increased but the mean claim size stays the same.
[1 mark]
(b) Consider security A, which has a standard deviation of 4%. If the standard deviation of the market return is 5%. The correlation between $A^{\prime} s$ return and that of the market is 0.75 . The risk-free rate is 5% and the expected return on the market is 10%. Calculate
i. the beta of security A.
[3 marks]
ii. security $A^{\prime} s$ expected return.
(c) An insurer knows from past experience that the number of claims received per month has a Poisson distribution with mean 15 and that claim amounts have exponential distribution with mean 500 . The insurer uses a security loading factor of 30%. calculate the insurer's adjustment coefficient and the probability of ruin if the initial surplus was 1000 .
[3 marks]

QUESTION FIVE

(a) The Capital Asset Pricing model is assumed to hold in a particular investment market.The total return on a unit invested in asset A in this market has mean 1.15 and standard deviation 0.10. The return on a unit invested risk free is 1.05 and the expected return on a unit invested in the market portfolio is 1.08 . You are given that A is an efficient portfolio.
i. Find the equation for the capital market line.
[3 marks]
ii. Calculate the standard deviation of the return on the market portfolio.
iii. Calculate the β for asset A .
[5 marks]
(b) State the assumptions of CAPM
(c) Investor A has an initial wealth of 100 and a utility function of the form $U(w)=\ln (w)$. Investor Z offers her a return of -18% or $+20 \%$ with equal probability.
i. What is her expected utility if she invests nothing in investment Z ?
[2 marks]
ii. What is her expected utility if she invests entirely in investment Z ?
[2 marks]

