JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (PUBLIC/COMMUNITY HEALTH) $1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2019/2020 ACADEMIC YEAR

KISUMU CAMPUS

COURSE CODE: SCH 3112
COURSE TITLE: ORGANIC CHEMISTRY

EXAM VENUE:
DATE: 13/08/2019
TIME: 2:00 HRS

STREAM: (BSc. Public \& Commu. Health)
EXAM SESSION: 2.00-4.00PM

INSTRUCTIONS

1. Answer question 1(Compulsory) in section A and ANY other 2 questions in section B
2. Candidates are advised not to write on the question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room
4. Some important information/formula are found on the last page of the questions paper

SECTION A 30 MRKS

QUESTION 1

a) Define the term pH

$$
1 \mathrm{mrk}
$$

b) Determine the pOH of a solution of Sulphuric acid whose concentration is given as 0.4 M 4mrks
c) A patient was admitted in a hospital with chronic obstructive pulmonary disease (COPD) characterized with shortness of breath due to Pneumonia. His arterial blood show: pH 7.29 , $\mathrm{PaCO}_{2} 65.3 \mathrm{mmHg}$, bicarbonate $27 \mathrm{mmol} / \mathrm{l}$. Classify his acid-base balance as
a. Acidosis or alkalosis, and as metabolic or respiratory. Explain 4 mrks
b. Propose the mechanism by which pneumonia contributed to this disorder.

2 mrks
d) Explain;
a. how the renal system compensates for respiratory acidosis and alkalosis

4 mrks
b. how the respiratory system would compensate for acidosis

2 mrks
e) Name TWO potential causes of Acidosis.

2 mrks
f) Draw the structure for each of the following compounds.

4 mrks
i. 2,3-dimethylbutane
ii. 4-ethyl-2-methylheptane
g) State the Le Chatelier's Principle
h) With the help of an example explain how concentration affects chemical equilibrium. 5 mrks

SECTION B

QUESTION 2

20 MARKS

a) Consider the reaction: $\mathbf{P}_{\mathbf{4}}+\mathbf{6} \mathbf{H}_{\mathbf{2}} \rightarrow \mathbf{4} \mathbf{P H}_{3}$. A rate study of this reaction was conducted at 298 K . The data that were obtained are shown in the table.

$\left[\mathrm{P}_{4}\right], \mathrm{mol} / \mathrm{L}$	$\left[\mathrm{H}_{2}\right], \mathrm{mol} / \mathrm{L}$	Initial Rate, $\mathrm{mol} /(\mathrm{L} \cdot \mathrm{s})$
0.0110	0.0075	3.20×10^{-4}
0.0110	0.0150	6.40×10^{-4}
0.0220	0.0150	6.39×10^{-4}

i. What is the order with respect to $\mathbf{P}_{\mathbf{4}}$ and $\mathbf{H}_{\mathbf{2}}$
ii. Write the rate law for this reaction

2 mrks
iii. Determine the value and units of the rate constant, k.
b) Explain why unbranched hydrocarbon molecules have lower boiling point than straight chain molecules.
iv. Give IUPAC name for the following organic compounds

QUESTION 32 MARKS

a) Explain ONEreason why aldehydes are more reactive than ketones.

2 mrks
b) Draw the structure of the following organic compounds
i. 1,3-dichloro-4-ethyloct-2-ene
ii. 4-methylhexanoic
c) Predict the products formed in each of the reactions below

4 mrks

d) Define the term equivalence point

2 mrks
e) If $20.0 \mathrm{~cm}^{3}$ of a Sulphuric acid solution was titrated with a standardized solution of $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}(0.05 \mathrm{M})$ potassium hydroxide. And using phenolphthalein indicator for the titration, the acid required $36.0 \mathrm{~cm}^{3}$ of the alkali KOH for neutralization.

QUESTION 420 MARKS

a) State Le Chatelier's Principle
2 mrks
b) Explain how temperature and catalystaffect rate of reactions.

4 mrks
c) The reaction below gives two products in unequal amounts. Identify the two products and state which one is the major product.

Reaction of but-1-ene with HBr

d) Study the Friedel-Crafts Acylation reaction below predict the compounds formed

e) Standard electrode potential provided below for use to answer the questions below;

$$
\begin{array}{|l|}
\hline \text { Equations } \\
\begin{array}{l|}
\hline C^{+3}{ }_{(a q)}+3 e^{-} \rightarrow C r_{(s)} \\
\mathrm{E}^{0}=-0.74 \mathrm{~V} \\
\hline C u^{+2}{ }_{(a q)}+2 e^{-} \rightarrow C u_{(s)} \mathrm{E}^{0}=+0.34 \mathrm{~V} \\
\hline F e^{+2}{ }_{(a q)}+2 e^{-} \rightarrow F e_{(s)} \mathrm{E}^{0}=-0.44 \mathrm{~V} \\
I_{2(s)}+2 e^{-} \rightarrow 2 I_{(a q)} \mathrm{E}^{0}=+0.54 \mathrm{~V} \\
\hline
\end{array} \\
\hline
\end{array}
$$

i. Use the half-cell reactions for $\left.\mathrm{Fe}(\mathrm{s}) / \mathrm{Fe}^{2+(} \mathrm{aq}\right)$ and $\left.\mathrm{Cu}(\mathrm{s}) / \mathrm{Cu}^{2+(} \mathrm{aq}\right)$ to construct an electrochemical cell and predict its standard voltage and state whether the reaction is spontaneous or not.

5mrks
ii. State ONE function of the salt bridge in an electrochemical cell

2 mrks
iii. Briefly explain one importance of redox process in industrial process

2 mrks

