

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE COMMUNITY HEALTH AND DEVELOPMENT & BACHELOR SCIENCE PUBLIC HEALTH

MAY –SEPTEMBER 2019 CLASS

COURSE CODE: SCH 3112

COURSE TITLE: ORGANIC CHEMISTRY

INSTRUCTIONS

- 1. Answer question 1(Compulsory) in section A and ANY other 2 questions in section B
- 2. Candidates are advised not to write on the question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room
- 4. Some important information/formula are found on the last page of the questions paper

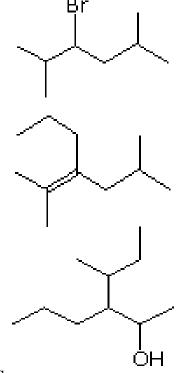
SECTION A 30 MRKS

QUESTION 1

- a) Define the term pH
 b) Determine the pOH of a solution of Sulphuric acid whose concentration is given as 0.4 M 4 mrks
- c) A patient was admitted in a hospital with chronic obstructive pulmonary disease (COPD) characterized with shortness of breath due to Pneumonia. His arterial blood show: pH 7.29, PaCO₂ 65.3 mmHg, bicarbonate 27 mmol/l. Classify his acid-base balance as
 - a. Acidosis or alkalosis, and as metabolic or respiratory. Explain 4 mrks
 - b. Propose the mechanism by which pneumonia contributed to this disorder. 2 mrks
- d) Explain;

	-	
	a. how the renal system compensates for respiratory acidosis and alkalosis	4 mrks
	b. how the respiratory system would compensate for acidosis	2 mrks
e)	Name TWO potential causes of Acidosis.	2 mrks
f)	Draw the structure for each of the following compounds.	4 mrks
	i. 2,3-dimethylbutane	
	ii. 4-ethyl-2-methylheptane	
g)	State Le Chatelier's Principle	2 mrks

h) With the help of an example explain how concentration affects chemical equilibrium. 5 mrks

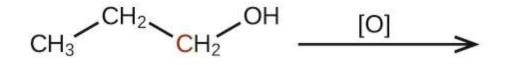

SECTION B

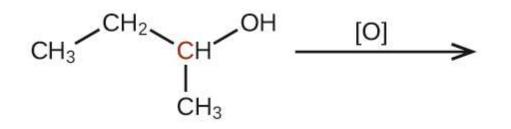
QUESTION 2 20 MARKS

a) Consider the reaction: $P_4 + 6 H_2 \rightarrow 4 PH_3$. A rate study of this reaction was conducted at 298 K. The data that were obtained are shown in the table.

[P ₄], mol/L	[H ₂], mol/L	Initial Rate, mol/(L · s)
0.0110	0.0075	3.20 x 10 ⁻⁴
0.0110	0.0150	6.40 x 10 ⁻⁴
0.0220	0.0150	6.39 x 10 ⁻⁴

	i.	What is the order with respect to P_4 and H_2	6 mrks
	ii.	Write the rate law for this reaction	2 mrks
	iii.	Determine the value and units of the rate constant, k.	3 mrks
b)	Explai	n why unbranched hydrocarbon molecules have lower boiling point than st	raight
	chain	nolecules.	3 mrks
	iv.	Give IUPAC name for the following organic compounds	6 mrks
		Dr	



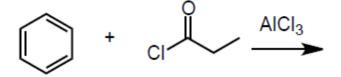

QUESTION 3 20 MARKS

- a) Explain ONE reason why aldehydes are more reactive than ketones. 2 mrks
- b) Draw the structure of the following organic compounds
 - i. 1,3-dichloro-4-ethyloct-2-ene
 - ii. 4- methylhexanoic
- c) Predict the products formed in each of the reactions below

4 mrks

6 mrks

d) Define the term equivalence point 2 mrks e) If 20.0 cm³ of a Sulphuric acid solution was titrated with a standardized solution of 0.0500 mol/dm³ (0.05M) potassium hydroxide. And using phenolphthalein indicator for the titration, the acid required 36.0 cm³ of the alkali KOH for neutralization.


Determine the concentration of the acid in g/lit? H=1; S=32; O= 16; K= 40 6 mrks

QUESTION 4 20 MARKS

- a) State Le Chatelier's Principle 2 mrks
- b) Explain how temperature and catalyst affect rate of reactions. 4 mrks
- c) The reaction below gives two products in unequal amounts. Identify the two products and state which one is the major product.

Reaction of but-1-ene with HBr 2 mrks

d) Study the Friedel-Crafts Acylation reaction below predict the compounds formed 3 mrks

e) Standard electrode potential provided below for use to answer the questions below;

Equations	E^{o}
$Cr^{+3}_{(aq)} + 3e^{-} \rightarrow Cr_{(s)} E^{0}$	= -0.74 V
$Cu^{+2}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)} E^{0}$	$^{0} = +0.34 \text{ V}$
$Fe^{+2}_{(aq)} + 2e^{-} \rightarrow Fe_{(s)} E^{0}$	= -0.44 V
$I_{2(s)} + 2e^{-} \rightarrow 2I^{-}_{(aq)} E^{o} = -$	+0.54 V

- i. Use the half-cell reactions for $Fe(s)/Fe^{2+(aq)}$ and $Cu(s)/Cu^{2+(aq)}$ to construct an electrochemical cell and predict its standard voltage and state whether the reaction is spontaneous or not. 5 mrks
- ii. State ONE function of the salt bridge in an electrochemical cell 2 mrks
- iii. Briefly explain one importance of redox process in industrial process 2 mrks

END