JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE
UNIVERSITYDRAFT EXAMINATION FOR BSc/BEd IN MATHEMATICS

$4^{\text {th }}$ YEAR $1^{\text {st }}$ SEMESTER 2018/2019 ACADEMIC YEAR
(INSTITUTIONAL BASED)
MAIN CAMPUS

COURSE CODE: SMA405
COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS I

EXAM VENUE:
STREAM: BSc Y4S1
DATE: 24/08/19
TIME: 2 HOURS
EXAM SESSION: 3.00-5.00PM

Instructions:

Answer question1 and any other two questions

1. Show all the necessary working
2. Candidates are advised not to write on the question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE(30 MARKS) -COMPULSORY

(a) Explain the three main properties of classifying the partial differential equation

$$
\begin{equation*}
a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}+d \frac{\partial u}{\partial x}+e \frac{\partial u}{\partial y}+f u+g=0 \tag{6Mks}
\end{equation*}
$$

(b) If the points $p(a, b)$ of the curve $g(x, y)=4 x^{2} y-y^{2}-8 x^{2}-2 x^{4}+1400$
satisfy system of the equations $\frac{\partial g}{\partial x}=0, \frac{\partial g}{\partial y}=0$
discuss the nature of such point $p(a, b)$
(c) Prove that the Pfaffian differential equation

$$
\begin{equation*}
\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0 \text { is integrable } \tag{4Mks}
\end{equation*}
$$

(d) Categorize the given partial differential equations below;
(i) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+x y=0$
(ii) $\frac{\partial u}{\partial t}=1002 \frac{\partial^{2} u}{\partial x^{2}}$ (iii) $\frac{\partial^{2} u}{\partial x^{2}}+y^{3} \frac{\partial^{2} u}{\partial y^{2}}=0$
(iv) $\frac{\partial u}{\partial t}+t \frac{\partial^{2} u}{\partial t \partial x}=\frac{\partial^{2} u}{\partial x^{2}}$
[6 marks]
(e) State degree , order of the partial differential equations below;
(i) $\frac{\partial^{2} u}{\partial x^{2}}+\sqrt{\frac{\partial^{2} u}{\partial y^{2}}}+2 y^{4}=0$ (ii) $\left(\frac{\partial u}{\partial t}\right)^{9}=1002 \frac{\partial u}{\partial x}$ (iii) $\frac{\partial^{2} u}{\partial x^{2}}+y^{3} \frac{\partial^{2} u}{\partial y^{2}}=0$
and identify which of the equations are linear
[9 marks]

QUESTION TWO (20Mks)

Show that the differential equation $\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+x^{3} d z=0$ is
(i) homogenous
(5 Mks)
(10 Mks)
iii) in Pfaffian form
and solve it.
(5Mks)

QUESTION THREE (20 Mks)

Given the curve $F(x, y, z)=8 x^{2}+24 y^{2}+16 z^{2}+24 x+16 z-10$
i) determine and classify all the critical points
(10 Mks)
ii) obtain the minimum and maximum values of F
(10 Mks)

QUESTION FOUR (20 Mks)

Consider a perfectly flexible elastic string, stretched between two points at $x=0$ and $x=1$ with uniform tension τ.
If the string is displaced slightly from its initial position while the ends remain fixed, and then released, the string will oscillate. The position u in the string at any instant will then be a function of its distance from one end x, of the string and also of time t $u=u(x, t)$,
i) Show that the equation of the motion is given by the partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

ii) Solve the equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}$ given
the boundary conditions

$$
u(0, t)=u(1, t)=0 \text { for all time } t \geq 0
$$

and the initial condition
$u(x, 0)=\sin 2 \pi, \quad u_{t}(x, 0)=0$
(20 marks)

QUESTION FIVE (20Mks)

Given the initial boundary value pde heat equation
$u_{t}=u_{x x}, \quad 0<x<1, t>0$
satisfying the conditions
$u(0, t)=1, u(1, t)=1 \quad 0<x<1, t>0$

$$
u(x, 0)=1+\cos 2 \pi x, \quad 0<x<1
$$

Apply variable separation of the form $u(x, t)=X(x) T(t)$. to solve the pde.

