

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITYDRAFT EXAMINATION FOR BSc/BEd IN MATHEMATICS

4th YEAR 1st SEMESTER 2018/2019 ACADEMIC YEAR

(INSTITUTIONAL BASED) MAIN CAMPUS

COURSE CODE: SMA405

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS I

EXAM VENUE:

STREAM: BSc Y4S1

DATE: 24/08/19

TIME: 2 HOURS

EXAM SESSION: 3.00 - 5.00PM

Instructions:

Answer question1 and any other two questions

- 1. Show all the necessary working
- 2. Candidates are advised not to write on the question paper
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room

QUESTION ONE(30 MARKS) - COMPULSORY

(a) Explain the three main properties of classifying the partial differential equation

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} + d\frac{\partial u}{\partial x} + e\frac{\partial u}{\partial y} + fu + g = 0$$
 (6Mks)

(b) If the points p(a,b) of the curve $g(x, y) = 4x^2y - y^2 - 8x^2 - 2x^4 + 1400$ satisfy system of the equations $\frac{\partial g}{\partial x} = 0$, $\frac{\partial g}{\partial y} = 0$ discuss the nature of such point p(a,b) (5Mks)

(c) Prove that the Pfaffian differential equation

$$(y^{2} + yz)dx + (xz + z^{2})dy + (y^{2} - xy)dz = 0$$
 is integrable (4Mks)
(d) Categorize the given partial differential equations below;

(i)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + xy = 0$$
 (ii) $\frac{\partial u}{\partial t} = 1002 \frac{\partial^2 u}{\partial x^2}$ (iii) $\frac{\partial^2 u}{\partial x^2} + y^3 \frac{\partial^2 u}{\partial y^2} = 0$
(iv) $\frac{\partial u}{\partial t} + t \frac{\partial^2 u}{\partial t \partial x} = \frac{\partial^2 u}{\partial x^2}$ [6 marks]

(e) State degree , order of the partial differential equations below;

(i)
$$\frac{\partial^2 u}{\partial x^2} + \sqrt{\frac{\partial^2 u}{\partial y^2}} + 2y^4 = 0$$
 (ii) $\left(\frac{\partial u}{\partial t}\right)^9 = 1002 \frac{\partial u}{\partial x}$ (iii) $\frac{\partial^2 u}{\partial x^2} + y^3 \frac{\partial^2 u}{\partial y^2} = 0$

and identify which of the equations are linear

[9 marks]

QUESTION TWO (20Mks)

Show that the differential equation $(x^2z - y^3)dx + 3xy^2dy + x^3dz = 0$ is

(i)	homogenous	(5 Mks)
ii)	integrable	(10 Mks)
:::)	the Dfaffian fame	

iii) in Pfaffian form

and solve it.

<u>(5Mks</u>)

QUESTION THREE (20 Mks)

Given the curve $F(x, y, z) = 8x^2 + 24y^2 + 16z^2 + 24x + 16z - 10$

i)	determine and classify all the critical points		(10 Mks)
ii)	obtain the minimum and maximum values of	F	(10 Mks)

QUESTION FOUR (20 Mks)

Consider a perfectly flexible elastic string, stretched between two points at x = 0 and x = 1 with uniform tension τ .

If the string is displaced slightly from its initial position while the ends remain fixed, and then released, the string will oscillate. The position u in the string at any instant will then be a function of its distance from one end x, of the string and also of time t

$$u=u(x,t),$$

i)

Show that the equation of the motion is given by the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$$

ii) Solve the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$ given

the boundary conditions

u(0,t) = u(1,t) = 0 for all time $t \ge 0$ and the initial condition $u(x,0) = \sin 2\pi , \quad u_t(x,0) = 0$

(20 marks)

QUESTION FIVE (20Mks)

Given the initial boundary value pde heat equation $u_t = u_{yy}, \quad 0 < x < 1, t > 0$ satisfying the conditions $u(0,t) = 1, u(1,t) = 1 \quad 0 < x < 1, t > 0$ $u(x,0) = 1 + \cos 2\pi x, \quad 0 < x < 1$

Apply variable separation of the form u(x,t) = X(x)T(t). to solve the pde.

(20 mark)