JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGYSCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCEUNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCEACTUARIAL
$2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER 2018/2019
REGULAR (MAIN)
COURSE CODE: SMA 210
COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY I
EXAM VENUE:
DATE: 21/08/19
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a) Suppose X and Y are discrete random variables with joint distribution

$$
f(x, y)=\left\{\begin{array}{cc}
1 / 30(x+y) & x=0,1,2,3: y=0,1,2 \tag{3Marks}\\
0 & \text { Otherwise }
\end{array}\right.
$$

i. Verify that $f(x, y)$ is probability distribution.
ii. Compute $P(X \leq 2)$
b) Let X and Y have the bivariate densities given by

$$
f(x, y)=\left\{\begin{array}{cc}
3 / 2 y^{2} & 0 \leq x \leq 2 ; 0 \leq y \leq 1 \\
0 & \text { Otherwise }
\end{array}\right.
$$

Obtain $f_{1}(x)$ and $f_{2}(x)$
(4 Marks)
c) Given that $f(x, y)=\left\{\begin{array}{cc}1 / 54(x+y) & x=1,2,3: y=1,2,3,4 \\ 0 & \text { Otherwise }\end{array}\right.$
i. Determine the conditional distribution of Y given that $X=x$
(3 Marks)
ii. Calculate

- $P(Y=1 / X=1)$
(2 Marks)
- $P(Y=4 / X=3)$
(2 Marks)
d) Given that $f(x, y)=\left\{\begin{array}{cc}(x+y) & 0<x<1: 0<y<1 \\ 0 & \text { Otherwise }\end{array}\right.$

Determine whether or not X and Y are independent.
(6 Marks)
e) Suppose that X is a random variable such that $0<\delta_{X}^{2}<\infty$ and that $Y=a X+b$ for some constants a and b where $a=0$. Show that if $a>0$ then $\rho_{X Y}=1$ and that if $a<0$ then $\rho_{X Y}=-1$
(7 Marks)

OUESTION TWO (20 MARKS)

a) If X and Y are random variables such that $\operatorname{var}(X)<\infty$ and, show that
i. $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X Y)$
ii. $\quad \operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)+2 a b \operatorname{cov}(X Y)$
(8 Marks)
b) Suppose that X and Y are random variables of $\operatorname{var}(X)=9 ; \operatorname{var}(Y)=4$ and $\rho_{X Y}=-1 / 6$ Determine
i. $\quad \operatorname{var}(X+Y)$
ii. $\operatorname{var}(X-3 Y+4)$
iii. $\operatorname{var}(3 X-2 Y)$
c) Explain TWO properties of covariance and correlation

QUESTION THREE (20 MARKS)

If X and Y have discrete joint distribution for which the joint probability distribution is defined as follows:
$f(x, y)=\left\{\begin{array}{cc}1 / 30(x+y) & x=0,1,2,: y=0,1,2,3 \\ 0 & \text { Otherwise }\end{array}\right.$

Determine the marginal probability function of X and Y and represent them in tabular form.

QUESTION FOUR (20 MARKS)

Let X and Y be continuous random variable with joint probability distribution function

$$
f(X, Y)=\left\{\begin{array}{cc}
e^{-Y} & 0<X<Y<\infty \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine;
i) $\quad M\left(t_{1}, t_{2}\right)$.
ii) $E(X), \operatorname{var}(X)$.
iii) $E(Y), \operatorname{var}(Y)$.
iv) $\operatorname{cov}(X, Y)$.
v) The correlation between X and Y.
vi) The marginal moment generating functions of X and Y.
vii) Are X and Y independent?

QUESTION FIVE (20 MARKS)

a) The joint probability density function of continuous random variables X and Y is

$$
f(x, y)=\left\{\begin{array}{cc}
1 / 8(6-x-y) & 0<x<2: 2<y<4 \\
0 & \text { Otherwise }
\end{array}\right.
$$

Find the joint distribution function of X and Y. Hence or otherwise find
i. $\quad P(X<1, Y<3)$
ii. $P(X<1)$
iii. $\quad P(Y \leq 3)$
b) The joint probability distribution function of continuous random variables X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
e^{-x} & 0<y<x<\infty \\
0 & \text { Otherwise }
\end{array}\right.
$$

Find the probability distribution function of $U=X+Y$ and $V=X-Y$

