

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION AND ACTUARIAL SCIENCE

4TH YEAR 2ND SEMESTER 2018/2019 ACADEMIC YEAR MAIN CAMPUS – INSTITUTIONAL BASED

COURSE CODE: SMA 402

COURSE TITLE: MEASURE THEORY

EXAM VENUE:

STREAM: BED AND ACT SCIENCE

DATE: 20/08/19

EXAM SESSION: 9.00 – 11.00AM

TIME: 2.00 HOURS

Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a) i) State three properties of Lebesgue outer measure	(3mks)
ii) Given the set $E = [0, 1]$, calculate the value of $m(E')$, where E' is the set of	of
irrational number in <i>E</i> .	(3mks)
iii) Prove that the outer measure of a singleton set is zero.	(3mks)
b) Show that for any sequence of set E_n , $m^*(\bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} m^*(E_n)$	(4mks)
c) Prove that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$ for any set B.	(5mks)
d) i) Prove that if E is a countable set, then $m^*(E) = 0$	(5mks)
ii) Show that interval $[a, b]$ is not countable.	(2mks)
e) i) Define the Lebesgue outer measure of the set $E \subseteq \mathbb{R}$	(2mks)
ii) Prove that the Lebesgue outer measure of an empty set is zero	(3mks)

QUESTION TWO (20 MARKS)	
a) i) State Caratheodory's measurability criteria.	(2mks)
ii) Prove that if E is a countable set, then $m^*(E) = 0$	(5mks)
b) i) Describe three forms of measure	(3mks)
ii) Define a property of almost everywhere in a set	(2mks)
c) Suppose f and g are measurable function, prove measurability of the fo	llowing:
i) $f + g$	(5mks)
ii) <i>f g</i>	(3mks)

QUESTION THREE (20 MARKS)

- a) i) Give an example of a set with outer measure zero but not countable. (1mks) ii) Show that every interval is not countable (3mks) iii) Show that if f is measurable function, then $\{x: f(x) = \alpha\}$ is measurable for each extended real number α . (5mks) b) Prove that the Lebesgue outer measure is translation invariant (5mks)
- c) Show that if function h(x) is measurable on a measurable set E, then |h(x)| is also (6mks) measurable to exams

QUESTION FOUR (20 MARKS)

a)	i) State two properties of measurable sets		(2mks)
	ii) Show that if $m^*(E) = 0$, then <i>E</i> is measured.	surable	(5mks)

- b) Prove that if f(x) and g(x) are equivalent functions a set E and f(x) is measurable, then g(x) is also measurable (5mks)
- c) Prove that the Dirichlet function defined by

$$f(x) = \begin{cases} 1, x \text{ rational} \\ 0, x \text{ irrational} \end{cases}$$

fails to have a Riemann integral over any interval [a, b]. Prove further that the Lebesgue intergral of f(x) of any measurable set A exist and is equal to zero (8mks)

QUESTION FIVE (20 MARKS)

- a) State and prove Fatous Lemma (10mks)
- b) State and prove Monotone convergence theorem (10mks)