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Abstract

We present norm inequalities for positive elementary operators via

Cauchy-Schwarz inequality and Minkowskis inequality techniques. Norm

inequalities are presented in Euclidean algebras linked to Minkowski’s

light cones. Lastly, we explore the applications in quantum theory

particularly in entanglement of states.
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1 Introduction

Let H be an infinite dimensional separable complex Hilbert space and M
the C*-algebra of all bounded linear operators on H. An operator φ :M→
M defined by φX̄,Ȳ is called an elementary operator if it is expressible as

φX̄,Ȳ (S) =
∑n

i=1XiSYi,∀Xi, Yi fixed in M, ∀S ∈ M where X̄, Ȳ are n-

tuples of of the operators. For all X ∈M and A,B fixed inM, examples of

the elementary operators are: the left multiplication operator, LA(X) = AX,

the right multiplication operator, RB(X) = XB, the generalized derivation

(implemented by A, B), δA,B = LA−RB, the inner derivation (implemented

by A), δA = AX−XA, the basic elementary operator(implemented by A, B),
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MA, B(X) = AXB, and the Jordan elementary operator(Two-sided multipli-

cation operator)(implemented by A, B), UA, B(X) = AXB +BXA.

ConsiderMn(C), the space of all n× n−complex matrices. For S ∈Mn(C)

there exists a unitary matrix U and positive semidefinite matrix P such

that S=UP, and this is a polar decomposition of S where P is unique and

P = |S| = (S∗S)
1
2 . U is also unique and has an inverse. Clearly, S∗S = P 2

and SS∗ = UP 2U. It is a fact that S is normal if S∗S = SS∗ and self ad-

joint if S = S∗. Moreover, S is normal if UP = PU and self commutator if

S∗S − SS∗. Now S∗S − SS∗ = 0 if and only if UP − PU = 0. We note that

S ∈ M is said to be positive if S ≥ 0 implies φ(S) ≥ 0 ∀S ∈ M. In this

paper, we give norm inequalities for positive elementary operators and their

applications in entanglement of states. For details on norms of elementary

operators see [??-??] and the references therein.

2 Preliminaries

We introduce basic definitions in this section that are useful in the sequel.

Definition 2.1. Let Rn be an n−dimensional Euclidean space with inner

products and R the set of real numbers. We define Cauchy-Schwarz inequal-

ity by (
∑n

i=1 XiYi)
2 ≤ (

∑n
i=1X

2
i )(
∑n

i=1 Y
2
i ),∀Xi, Yi ∈ Rn(i = 1 . . . n). More-

over, let xi, yi be complex numbers, we define Minkowski’s inequality by

(
∑n

i=1 |xi + yi|p)
1
p ≤ (

∑n
i=1 |xi|p)

1
p + (

∑n
i=1 |yi|p)

1
p , where 1

p
+ 1

q
= 1.

Remark 2.2. For triangle inequality we have ‖η+ ξ‖p ≤ ‖η‖p + ‖ξ‖p, where

1 ≤ p ≤ ∞ and η and ξ are members of Lp(Ω) where Ω is a measure space.

If η and ξ are linearly dependent i.e. η = αξ for α > 0 then the norm

is ‖η‖p = (
∫
|η|dα)

1
p , if p < ∞. We attain the essential supremum ‖η‖∞ =

ess supx∈Ω |η(x)| if p =∞. Generally, ‖η‖p = sup‖ξ‖q=1

∫
|ηξ|dα, for 1

p
+ 1
q

= 1.
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Definition 2.3. Let Rn be an Euclidean space and R the set of all real

numbers. Let X, Y ∈ Rn, where n ≤ 4. If n = 4, we define the Minkowski’s

form by [X, Y ] = X1Y1 − X2Y2 − X3Y3 − X4Y4. The set defined as follows:

Π = {X ∈ R4, [X,X] > 0 and X1 > 0} is called a light cone.

Remark 2.4. We can extend Definition ?? as follows: For (t,X)(u, Y ) ∈
R×Rn, we have [(t,X)(u, Y ) = tu−〈X, Y 〉], where 〈X, Y 〉 is the usual inner

product of Rn. A class of cones is thus obtained denoted by:

ΠC
n+1 = {(t,X) ∈ R× Rn, t >

√
〈X,X〉}.

3 Norm Inequalities

The following result which is analogous to [??, Theorem 6] is very important

in this work.

Theorem 3.1. Let φX̄,Ȳ (S) =
∑n

i=1XiSYi be an elementary operator from

ΠC
n+1(H)→ ΠC

n+1(H). φ is n+1−positive if and only if there exisits R1 . . . Rr

and T1 . . . Tk in {X1 . . . Xn} with r + k ≤ n such that (T1 . . . Tk) is n +

1−contractive locally linear combination of R1 . . . Rr and φ(S)
∑n

i=1RiSR
∗
i +∑n

i=1 T
∗
i STi∀S ∈ Πn+1(H)

Proof. Since S∗S = P 2 and SS∗ = UP 2U, by ther proof of [??, Lemma 5]

we obtain the result.

Proposition 3.2. Let Si and Ki ∈ ΠC
n+1(H) be positive operators then

(
∑n

i=1 SiKi)
2 ≤ (

∑n
i=1 S

2
i )(
∑n

i=1K
2
i ) and ‖(

∑n
i=1 SiKi)

2‖ ≤ ‖
∑n

i=1 S
2
i ‖‖

∑n
i=1K

2
i ‖.

Proof. Consider the set of all quadratic polynomials V i.e.

(S1V+K1)2+. . .+(SnV+Kn)2 =

(
n∑
i=1

(S)2
i

)
.V 2+2

(
n∑
i=1

(Si.Ki)

)
.V+

n∑
i=1

(K2
i ).
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Clearly, it’s non-negative hence its discriminant is obviously less or equal to

zero i.e. (
∑n

i=1 Si.Ki)
2 −

∑n
i=1 S

2
i

∑n
i=1 K

2
i ≤ 0. For the case of n−copies

of H i.e. Hn, we have
∑n

i=1

∑n
j=1(SiKj − SjKi)

2 =
∑n

i=1 S
2
i

∑n
j=1K

2
j +∑n

j=1 S
2
j

∑n
i=1K

2
i − 2

∑n
i=1 SiKi

∑n
i=1 SjKj, which gives after identical col-

lections 1
2

∑n
i=1

∑n
j=1(SiKj − SjKi)

2 =
∑n

i=1 S
2
i

∑n
i=1K

2
i −

∑n
i=1(SiKi)

2.

Thus,
∑n

i=1 S
2
i

∑n
i=1K

2
i − (

∑n
i=1 SiKi)

2 ≥ 0. By submultiplicative operator

norm, we obtain
∥∥∥(
∑n

i=1 SiKi)
2
∥∥∥ ≤ ‖∑n

i=1 S
2
i ‖ ‖

∑n
i=1K

2
i .‖

Remark 3.3. We obtain the same results if we consider Schatten p−classes

and the Hilbert-Schmidt norm on Si, Ki in ΠC
n+1H

n.

Theorem 3.4. Let S and K ∈ ΠC
n+1(H) be positive operators then

‖S +K‖2 ≤ ‖S‖2 + ‖K‖2.

Proof. By triangle inequality and Theorem ?? positivity is taken care of.

Lastly, by invoking Proposition ??, the proof follows immediately.

Example 3.5. Consider S,K ∈ ΠC
n+1(H) and let ΠC

n+1(H) be a probability

space where S,K are treated as random variables. If the inner product is

defined as 〈S,K〉 = E(SK), where E(SK) is the expectation of S and K,

then |Cov(SK)|2 ≤ V ar(S)V ar(K).

Indeed, by Cauchy-Shwarz inequality we have, |E(SK)|2 ≤ E(S2)E(K2).

Now if τ = E(S) and δ = E(K), then clearly we have

|Cov(SK)|2 = |E((S − τ)(K − σ))|2

= |〈S − τ,K − σ〉|2

≤ 〈S − τ, S − σ〉〈K − τ,K − σ〉

= E(S − τ)2E(K − σ)2

= V ar(S)V ar(K).
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Here V ar denotes variance and Cov denotes covariance in the usual proba-

bility sense.

Theorem 3.6. Let φS̄,K̄(T ) be an elementary operator on
∏C

n+1(Hn) and

Si, Ki ∈
∏C

n+1(Hn) be positive operators, then ‖A + B‖p ≤ ‖A‖p + ‖B‖p
where A and B are summable representations of Si and Ki in the form A =

(
∑n

i=1 |Si|p)
1
p and B = (

∑n
i=1 |Ki|p)

1
p .

Proof. We shall use Minkowski’s inequality in this proof. By p−norm and

the convexity over R+, since Si and Ki are positive it’s easy to see that

‖A + B‖p ≤ 2p−1(‖A‖p + ‖B‖p). Next we consider two cases. Case 1 :

‖A + B‖p = 0 then by Minkowski’s inequality the result holds. If it is less

than zero then we have case 2 and so by triangle inequality and by Holder’s

inequality(HI) we obtain,

‖A+B‖pp =

∫
|A+B|pdτ

=

∫
(|A+B|)|A+B|p−1dτ

≤
∫

(|A|+ |B|)|A+B|p−1dτ

=

∫
|A||A+B|p−1dτ +

∫
|B||A+B|p−1dτ

≤HI

((∫
|A|pdτ

) 1
p

+

(∫
|B|pdτ

) 1
p

)(∫
|A+B|p−1 p

p−1dτ

)1− 1
p

= (‖A‖p + ‖B‖p)
‖A+B‖pp
‖A+B‖p

.

By multiplying both sides by ‖A+B‖p
‖A+B‖pp

we obtain the result.

4 Norms in Light Cones of positive operators

Let φX,Y (S) be an elementary operator on the algebra of light cones ΠLC
n+1(H)

and S ∈ ΠLC
n+1(H). Let X, Y be fixed in ΠLC

n+1(H). We denote the composition
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operation in ΠLC
n+1(H) by (t,X) ∗ (u, Y ) = tu+ 〈X, Y 〉+ tY + uX, where the

unity is (1, 0) in ΠLC
n+1(H). An associated norm with respect to spectral

theory is given by ‖X‖α = max{|α|, α ∈ σ(X)}.

Definition 4.1. Let ΠLC
n+1(H) be the algebra of all light cones in H. Con-

sidering symmetry in R and for the algebra sym(m,R), we have an operator

defined by: φX,Y (S) = X∗(Y ∗S)+Y ∗(X∗S)−X∗Y ∗S, ∀S ∈ ΠLC
n+1(H) and

X, Y fixed in ΠLC
n+1(H) and the norm is given by ‖φX,Y (S)‖∞ ≥ 1

2
‖X‖∞‖Y ‖∞

as a lower estimate[??].

Theorem 4.2. Let φLCn+1(H) be the algebra of the light cones in H with di-

mensions ≥ 3. Then we have ‖φX,Y (S)‖α ≥ (
√

2 − 1)‖X‖∞‖Y ‖∞, ∀ X, Y
fixed in ΠLC

n+1(H) and for all positive operators S ∈ ΠLC
n+1(H).

Proof. By definition of supremum norm we have ‖φX,Y (S)‖∞ standing for

sup‖S‖∞≤1 ‖φX,Y (S)‖α. By [??, Lemma 1], we have ‖φX,Y (S)‖ represented as

‖φX,Y (S)‖ ≥ max{|2‖u‖ − 1|, |2‖v‖ − 1|} and by the proof in [??, Theorem

3], result follows analogously.

Remark 4.3. There are interesting cases of the lower norm estimate where

the coefficient of the norms have been obtained for Jordan elementary oper-

ators, for example, 1, 1
2
, 2

3
, (
√

2− 1) among others in different algebras. The

result obtained here is an assertion of the Stacho and Zalar [??] lower norm

estimate in the case of ΠLC
n+1(H).

5 Applications to entanglements of states

Entanglement is a basic physical resource to realize various quantum infor-

mation and quantum communication tasks such as quantum cryptography,

teleportation, dense coding and key distribution. Composite quantum sys-

tems are systems that naturally decompose into two or more subsystems,

where each subsystem itself is a proper quantum system. Most frequently,
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the individual subsystems are characterized by their mutual distance that is

larger than the size of a subsystem. A typical example is a string of ions,

where each ion is a subsystem, and the entire string is the composite system.

Formally, the Hilbert space H associated with a composite, or multipartite

system, is given by the tensor product of the spaces corresponding to each

of the subsystems. By definition, these states are systems where the second

electron is in the opposite configuration to the first. If one of the electrons

is measured to be up along a given direction, then the other will definitely

be down without the need for measurement. A pair of electrons in this state

are said to be entangled. None of these two states are product states and

for every product state there is a direction along which you will measure

the spin of the first electron to be 1 with certainty and a direction along

which you will measure the spin of the second electron to be 1 with 100

percent certainty. All we need to do to produce an entangled state is to

bring two electrons in close enough proximity so that their magnetic fields

interact and then leave them alone. Eventually, the electrons will be entan-

gled, after maybe having emitted a photon. This is due to the fact that the

electrons in opposite configuration is the lowest energy state of a two elec-

tron system. We can also think about as the first electron being the magnet

that prepares the second (or vice versa). In this regard, we can treat an

elementary operator φX̄,Ȳ (S) as a quantum system of the sum of the basic

ones X1SY1, ..., XnSYn as subsystems. To illustrate this, suppose molecule

Aj consists of Nj atoms (j = 1, 2) and these two molecules, A1 and A2, are

combined to form molecule A3 which has N3 atoms. Thus, one wishes to

obtain or approximate the ground state energy and wave function, EA3 and

ψA3 respectively, of the system A3 from the simpler ground state energy and

wave function EAj
and ψAj

of the constitutive systems Aj, j = 1, 2. For

example, the formula cited by Goldstein and Levy given below

C3H8 = 2C2H6 − CH4
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(which reads, ”One propane equals two ethanes minus one methane”) sug-

gests the obvious expression for the ground state energy EC3H8 of propane in

terms of the ground state energies EC2H6 and ECH4 of ethane and methane:

C3H8 = 2C2H6 − CH4 and this later formula, whilst not correct, is known

to be very accurate, the relative error between the two sides of the equa-

tion above is less than 0.01 percent. This precision shows the significance of

entanglement in quantum systems.
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