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QUESTION ONE [30 MARKS] COMPULSORY 

a) Define the following terms in relation to linear spaces      

i) Span                     (2mk) 

ii) Dimension                     (2mk) 

b) Show that the eigenvalues of the matrix  𝐴 = [
51 0 0
0 11 0
0 0 −31

] are ;51, 11, -31        (10mks)                           

 

c) Let 𝑇: 𝑹3 → 𝑹3 be a linear operator defined by 

    𝑇( 𝑥1, 𝑥2, 𝑥3) = (2𝑥1 − 𝑥2 − 𝑥3, 𝑥1 −  𝑥3 , −𝑥1 + 𝑥2 + 2𝑥3). Find the matrix 𝐵 

associated with 𝑇 with respect to the standard ordered basis                                   (8mks) 

 

d) Let  𝐴 = [
1 4
2 3

]. 

 Find all the eigenvalues of 𝐴  and the corresponding eigenvectors                         (8mks) 

 

 

 

QUESTION TWO (20 MARKS) 

a) Let 𝐴 =  [
2 3
3 5

]   and 𝐵 =  [
11 6
−2 14

]. Show that (𝐴𝐵)−1 =  𝐵−1𝐴−1                     (10mks) 

 

 

b) Consider the following bases 𝐵 = {(1, 0),   (0, 1)}  and  𝐵′ = {(1, 2),   (2, 3)}  for  𝑹2. If  

𝑇 ∶  𝑹2  →  𝑅2 is a linear transposition defined by  𝑇(𝑥1, 𝑥2) = (𝑥1 + 7𝑥2, 3𝑥1 −  4𝑥2).  

i) Find 𝐴, the matrix of representation of 𝑇 with respect to 𝐵                  

ii) Find 𝑀, the matrix of representation of 𝑇 with respect to 𝐵′                (10mks) 

 

   

 

QUESTION THREE (20 MARKS)  

Let  𝑇 ∶  𝑹3  →  𝑹3 be a linear operator from a vector space  𝑹3  to itself defined 

by   𝑇 ([

𝑥1

𝑥2

𝑥3

]) =  [
2𝑥1 −  𝑥2 − 4𝑥3

𝑥1 −  𝑥3

−𝑥1 + 𝑥2 +  2𝑥3

]          
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i) Obtain 𝑀 the matrix of the linear operator  𝑇     (8mks) 

ii) Find the characteristic polynomial of the operator  𝑇               (6mks) 

iii) Find the eigenvalues of  𝑇 and their corresponding eigenvectors                        (6mks)     

            

  QUESTION FOUR (20 MARKS) 

 

a) Verify that the set  𝑆 = {(𝑥, 3𝑥):  𝑥 𝜖 𝑹 }   is a subspace of  𝑹2                        (4mks) 

b) i) State Cayley Hamilton theorem                                                           (3mks)  

ii) Give matrix 𝐴 =  [
2 1
5 −3

] ,show that both 𝐴 , 𝑨−1 satisfy Cayley Hamilton theorem . 

(8mks)    

c) i) Define the term kernel                               (2mk)                                                                                                                            

ii) If   𝑇: 𝑈 → 𝑉  is a linear mapping, show that the kernel of  𝑇  is a subspace of  𝑈                                                              

(3mks) 

d) Find the matrix of linear mapping  𝑇:  𝑃3  →  𝑃1  given by  𝑇(𝑓) =  𝑓′′ + 𝑓′′′           (4mks) 

QUESTION FIVE (20 MARKS) 

a) Define the term orthogonality of vectors in a vector space  𝑊                                (4mks) 

b) Let 

1 2 2

2 2 1

2 1 2

 
 

  
  

P  be a real square matrix. 

Prove that P   is orthogonal hence and find P̂ the  orthonormalized form of P and  1P̂

.[10marks]  

c) If  𝑉  is a linear space of all functions of the form  𝑓(𝑡) =  𝑐1 cos 𝑡 + 𝑐2 sin 𝑡 , where 𝑐1  

and  𝑐2 are arbitrary constants,  

Find the matrix of linear transformation 𝑇(𝑓) =  𝑓′′′ + 𝑎𝑓′′ + 𝑏𝑓′  with respect to the basis 

cos 𝑡 , 𝑠𝑖𝑛 𝑡  where a and b are arbitrary constants                                   (6mks) 

 


