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SECTION A 

QUESTION ONE compulsory (30 MARKS)  

a) Define the following terms:       (6 marks) 

(i) Metric space 

(ii) Riemann integrable function 

(iii) Sequence 

b) Find a simple expression for nth
 terms of each sequence     (4 marks) 
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c) Show that 
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       (5 marks) 

d) Let (xn) and (yn) be two converging sequences as n with the limits l and h 

respectively. Show that hlyx nn  .      

 (7 marks) 

e) Show that ),( dd   is a metric space whenever  yxyxyxd ,,),(  (8 marks) 

SECTION B 

QUESTION TWO (20 MARKS) 

a) Suppose ],[: baf is bounded. Prove that  
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ff .     (6 marks) 

b) If f is a Riamann integrable  function on [a,b]. Show that  ),().( PfLPfU   (10 

marks) 

c) Using Bolzano-Wierstrass theorem show that the bounded sequence below is convergent. 
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       (4 marks) 

QUESTION THREE (20 MARKS) 

a) List the first three terms of the sequence     (2 marks) 
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b) Prove that sequence an has at-most one limit.     (8 marks) 

c) State and prove monotone convergence theorem     (10 marks) 

 



QUESTION FOUR (20 MARKS) 

a) Distinguish between limit inferior and limit superior.    (4 

marks) 

b) Show that every Cauchy sequence is bounded.      (8 

marks) 

c) Prove that the sequence 
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is Cauchy sequence.    (8 marks) 

QUESTION FIVE (20 MARKS) 

a) Show that the series 


 1 )1(
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n nn
converges to 1    (4 marks) 

b) State the following theorems and Lemma    (8 marks) 

i) Comparison test theorem 

ii) Integral test theorem 

iii) Bolzano-Weirstrass  theorem 

iv) Squeeze Lemma 

c) Prove that the set of real numbers in the interval (0,1) is uncountable.   (8 marks) 

 

 

 

 

 

 


