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OASIS OF KNOWLEDGE



QUESTION ONE

(a) Define the following terms as used in actuarial mathematics;

i. Contingent probability.

ii. tqxy

iii. tpxy [5 marks]

(b) Calculate the present value as at 1 January 2003 of an annuity payable annually in
arrear for 15 years. The first payment is 500 and subsequent payments increase by 3%
per annum compound. [5 marks]

(c) Consider the following function for a newborn

S0(x) =
1

c
(110 − x)

2
3 , 0 ≤ x ≤ 110

i. Calculate c so that this survival function is legitimate and give the limiting age
for this model. [2 marks]

ii. Calculate the probability that a newborn will reach to age 65 but die within 20
years following that. [2 marks]

iii. Calculate the expected future lifetime of a newborn. [2 marks]

(d) Given the following 5p50 = 0.9, 10p50 = 0.8 and q55 = 0.03. Find the probability that
(56) will die within four years. [5 marks]

(e) Given that q70 = 0.01043 and q71 = 0.01167. Calculate

i. 0.7q70.6 assuming a constant force of mortality, [3 marks]

ii. 0.7q70.6 assuming a uniform distribution of deaths. [3 marks]

(f) If µx = 0.01908 + 0.001(x− 70), forx ≥ 55, calculate 5q60. [3 marks]

QUESTION TWO

(a) Let X be an age at death random variable. If mortality is described by

s(x) = (1 − x2

8100
) for 0 ≤ x ≤ 90

Determine

i. e̊0 and interpret this value.(show your working) [5 marks]

ii. The probability that a life age 35 dies before age 55 years. [2 marks]

iii. µ(40) [5 marks]

(b) The following is an extract from a standard mortality table.

x 40 41 42
qx 0.00278 0.00298 0.0032

A substandard table is obtained from this standard table by adding a constant c = 0.1
to the force of mortality which results to rates denoted by qsx. Calculate the probability
that a substandard life (40) will die between ages 41 and 42. [5 marks]

2



(c) A man makes payments into an investment account of Ksh 200 at time 5, Ksh 190
at time 6, Ksh 180 at time 7, and so on until a payment of Ksh 100 at time 15.
Assuming an annual effective rate of interest of 3.5%, calculate: the present value of
the payments at time 4. [5 marks]

QUESTION THREE

(a) The following is an extract from a select and ultimate table. Use it to answer the
following questions;

[x] l[x] l[x+1] l[x+2] x+2
40 33519 33485 33440 42
41 33467 33428 33378 43
42 33407 33365 33309 44
43 33340 33294 33231 45
44 33265 33213 33143 46

i. What is the select period? [2 marks]

ii. Calculate the following probabilities; 2p[42] and 3q[41]+1. [4 marks]

iii. Assuming a UDD between integer ages, calculate 0.5p44. [3 marks]

(b) It is given that k|q0 = 0.1(k + 1), for k = 0, 1, 2, 3. Suppose linear assumption holds
between integral ages, find 2.75p0. [4 marks]

(c) Show that tpx = 1− t · qx under uniform distribution of deaths assumption. [3 marks]

(d) Let X be the age at death random variable. Assume that X ∼ DeMoivre′s law with
omega as 100. Calculate the µ30. [4 marks]

QUESTION FOUR

(a) Consider the following survival function

s(x) = 1 − x

95
, 0 ≤ x ≤ 95

i. Derive the expression for the force of mortality for (x), [5 marks]

ii. Derive the expression for tp75, [3 marks]

iii. Calculate E[K75]. [3 marks]

(b) Suppose that for an initial investment of 1000 dollars you obtain a payment of 400
dollars after one year and 770 dollars after two years. Obtain the yield of this deal. [5
marks]

(c) Calculate the value of 1.75p45.5 on the basis of AM92 mortality table and assuming that
deaths are uniformly distributed between integral ages. [4 marks]
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QUESTION FIVE

(a) A perpetuity immediate has annual payments. The first payment is 1 and each sub-
sequent payment increases by 1 until the payment reaches 20. The payments stay level
thereafter. Find the present value of the perpetuity at an annual effective interest rate
of 6%. [5 marks]

(b) The mortality of a certain population is governed by the life table function lx =
100 − x, 0 ≤ x ≤ 100. Calculate the values of the following expressions:

i. µ30 [3 marks]

ii. P (T30 < 20) [2 marks]

iii. e̊30. [3 marks]

(c) The complete life expectation of a life age x, is e̊x, show that e̊x =
∫∞
0 tpxdt. [3 marks]

(d) The survival function of (x) is given by

s(x) = (1 − x

ω
)2.5, 0 ≤ x ≤ ω

If µ80 = 0.05, calculate and interpret e̊60:25 . [5 marks]
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