JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

YEAR FOUR SEMESTER ONE EXAMINATION
SMA 405 : PARTIAL DIFFERENTIAL EQUATION I(Special Resit)
INSTRUCTION: Answer Question ONE and ANY other TWO questions.

QUESTION ONE (COMPULSORY)

a) State the order and degree of the partial differential equations below
i) $\frac{\partial^{2} y}{\partial x^{2}}+\left(\frac{\partial y}{\partial x}\right)^{3}+\left(\frac{\partial^{3} z}{\partial x^{3}}\right)^{4}=0$
ii) $\left(\frac{\partial y}{\partial x}\right)^{4}+\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{3} z}{\partial x^{3}}=0$
(4 marks)
b) Define the following
i) Total differential equation
ii) Non-Linear partial differential Equation
iii) Semi-linear partial differential Equation
iv) Quasi-linear partial differential equation
c) Solve the simultaneous Differential equation

$$
\begin{equation*}
\frac{d x}{x z\left(z^{2}+x y\right)}=\frac{d y}{-y z\left(z^{2}+x y\right)}=\frac{d z}{x^{4}} \tag{6marks}
\end{equation*}
$$

d) Find the orthogonal trajectory on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ of its intersection with with the family of planes parallel to $z=0 \quad$ (8 marks)
e) Solve the following differential equations by inspection
i) $d f(x, y)=\frac{x d y+y d x}{x^{2}}$
ii) $\quad d f(x, y)=\frac{x d y+y d x}{x^{2}+y^{2}}$

QUESTION TWO (20 marks)

a) By eliminating the arbitrary constants a and b from $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ form a partial differential equation
(4 marks)
b) Solve the homogeneous equation

$$
\begin{equation*}
\left(x^{2} y-y^{3}-y^{2} z\right) d x+\left(x y^{2}-x^{2} z-x^{3}\right) d y+\left(x y^{2}+x^{2} y\right) d z=0 \tag{10marks}
\end{equation*}
$$

c) By choosing appropriate multipliers solve

$$
\begin{equation*}
\frac{d x}{4 y-3 z}=\frac{d y}{4 x-2 z}=\frac{d z}{2 y-3 x} \tag{6marks}
\end{equation*}
$$

QUESTION THREE (20 marks)

a) Solve the Pfaffian differential equation

$$
\begin{equation*}
(y z+x y z) d x+(z x+x y z) d y+(x y+x y z) d z=0 \tag{5marks}
\end{equation*}
$$

b) Find $f(y)$ such that the Pfaffian differential equation

$$
\{(y z+z) / x\} d x-z d y+f(y) d z=0 \text { is integrable hence solve it. } \quad(10 \text { marks })
$$

c) Use Lagrange's method to solve $x y p+y^{2} q=z x y-2 x^{2}$

QUESTION FOUR (20 marks)

a) Show that the equation $x p-y q=x$ and $x^{2} p+q=x y$ are compatible hence find their solution.
b) Solve $\left(x^{2}+y^{2}\right) p+2 x y q=z(x+y)$
c) Form a partial differential equation by eliminating the arbitrary function f from the function $x+y+z=f\left(x^{2}+y^{2}+z^{2}\right)$
(5 marks)

QUESTION FIVE (20 marks)

a) Solve the Cauchy's problem for $z p+q=1$ where the initial data curve is $x_{0}=\mu, y_{0}=\mu, z_{0}=\frac{\mu}{2}$ for $0 \leq \mu \leq 1$
b) Use Charpit's method to find the complete integral of $p^{2}-y^{2} q=y^{2}-x^{2}$
(12 marks)

