

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE /ARTS

MAIN REGULAR

COURSE CODE: SMA 403

COURSE TITLE: TOPOLOGY

EXAM VENUE

STREAM: BED SCI/ARTS

DATE:

EXAM SESSION:

TIME: 2.00 HOURS Instructions:

INSTRUCTIONS:

- This examination paper contains five questions. Answer question one, and any other two questions.
- 2. Start each question on a fresh page.
- 3. Indicate question number clearly at the top of each page

SECTION A

QUESTION ONE

a)	Define the following with respect to a metric space:				
	(i)	Neighbourhood	(3 marks)		
	(ii)	Interior point	(3 marks)		
b)	Show that the intersection of a finite family of open sets is itself open in a metric space.				
			(6 marks)		
c)	Defin	e a topology and suppose that $X = \{a, b, c, d, e, f\}$ and			

 $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\}, \text{ Is } \tau \text{ a topology on } X?$ (5 marks)

d) Let (X, τ) be a topological space and $A \subseteq X$. If $X = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{3, 4\},$ $\tau = \{\phi, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 4\}, X\}.$

Find

	(i).	Int(A)	(1 mark)
	(ii).	Ext(A)	(2 marks)
	(iii).	Bdy(A)	(2 marks)
	(iv).	Bdy(B)	(5 marks)
e)	Show	that the indiscrete topological space is indeed a topological space.	(3 marks)

SECTION B

QUESTION TWO

a) Let (X, τ) be a topological spaces. Show that $\tau_1 \cap \tau_2$ is a topology on X. (6 marks)

(6 marks)

(2 marks)

- b) Show that the taxicab metric d for \mathbb{R}^n indeed a metric space.
- c) Let $X = \{1,2,3,4,5\}$ $\tau = \{X, \phi, \{5\}, \{2,3\}, \{2,3,5\}, \{1,2,3,4\}\}$ and $A = \{1,4,5\}$. Find all the limit points of *A*. (6 marks)
- d) Define the closure of a set.

QUESTION THREE

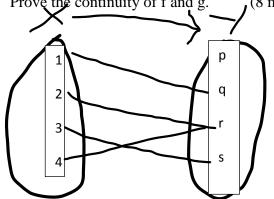
- a) Consider (X, τ) be a topological spaces and $A \subseteq X$. Define $\tau_A = \{A \cap u | u \in \tau\}$. Show that τ_A is a topology on *A*. (6 marks)
- b) Prove that a topological space (X, τ) is a T_1 -space if and only if every singleton subset of X is closed. (6 marks)
- c) $X = \{1,2,3\}, \tau_1 = \{X, \emptyset, \{1\}, \{1,2\}, \{1,3\}\} \tau_2 = \{X, \emptyset, \{2\}\}$
 - (i) Is $\tau_1 \cup \tau_2$ a topology on X. (5 marks)
 - (ii) Which one of the topologies is coarser (finer)? Explain you answer? (3 marks)

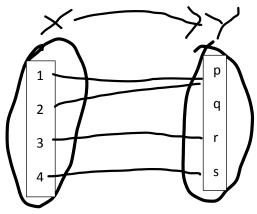
QUESTION FOUR

- a) Given $X = \{1, 2, 3, 4, 5\}$ $\tau = \{X, \emptyset, \{5\}, \{2,3\}, \{2,3,5\}, \{1,2,3,4\}\}$ $A = \{5\}, B = \{3,4\}$ Find (i). \overline{A} (2 marks)
 - (ii). Boundary of B (4 marks)
 - (iii) Limit points of A. (4 marks)
- b) Let (X, τ) be a topological space and $A \subseteq X$. Prove that A is closed if and only if it contains all its limit points. (10 marks)

QUESTION FIVE

- a) et $X = \{a, b, c\}$ and $\mathfrak{B} = \{\{a\}, \{c\}, \{a, b\}, \{b, c\}\}$. Show that \mathcal{B} is not a basis for any topology on *X*? (6 marks)
- b) Let $X = \{1,2,3,4\}$ and $Y = \{p,q,r,s\}$ $\tau_X = \{\emptyset, \{1\}, \{1,2\}, \{1,2,3\}, X\}$ $\tau_Y = \{\emptyset, \{p\}, \{q\}, \{p,q\}, \{q,r,s\}, Y\}$. Let f and g be two functions defined by the diagrams. Prove the continuity of f and g. (8 marks)





- c) State the following separation axioms
 - i) T_0 -space
 - ii) Haursdorff space
 - iii) Regular space

- (2 marks)
- (2 marks)
- (2 marks)