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JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY  

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE 

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF   EDUCATION 

ARTS, SPECIAL EDUCATION AND EDUCATION SCIENCE 

RESIT 2 

REGULAR (MAIN) 

COURSE CODE:   SMA 210 

COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY I 

EXAM VENUE:   STREAM: (B.e.d ARTS, SPECIAL ed. & B.ed 

SCIENCE)  

DATE:        EXAM SESSION:  

TIME:  2.00 HOURS  

 

Instructions: 

1. Answer question 1 (Compulsory) and ANY other 2 questions  

2. Candidates are advised not to write on the question paper. 

3. Candidates must hand in their answer booklets to the invigilator while in the 

examination room. 
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QUESTION ONE (30 MARKS) 

a) Let X and Y have a bivariate probability density function given by  
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 Obtain marginal densities of X and Y.     (4 Marks) 

b) Suppose that the joint probability distribution function of X and Y is 
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 Determine: 

i. The conditional probability density function of Y given X.  (4 Marks) 

ii. Compute  5.0/2Pr  XY       (4 Marks) 

c) Outline TWO properties of covariance of two random variables.  (2 Marks) 

d) Suppose that X and Y are random variables of   9var X ,   4var Y and
6

1
XY . 

Determine: 

i.  YX var         (2 Marks) 

ii.  43var  YX        (2 Marks) 

e) Given that 1X  and 2X  are random variables  with joint probability distribution function 

given by 
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 Determine whether or not 1X and 2X are independent.   (5 Marks) 

f) Consider a two dimensional random variable  21, XX  having a density function given by  
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 Compute: 

i.  21 23 XXE         (4 Marks) 

ii.  21XXE         (3 marks) 

 

QUESTION TWO (20 MARKS) 

a) Suppose that X is a random variable such that  20 X and that baXY  for some 

constant a and b where 0a .  Show that if 0a then 1XY and if 0a  then 

1XY          (4 Marks) 

b) Describe the regression between X and Y from a joint probability distribution function 

given by  
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QUESTION THREE (20 MARKS) 

a) Show that the moment generating function of a bivariate normal distribution is given by 

    22

221

22

12121 2
2

1exp, yyxxyx ttttttttm      (10 Marks) 

b) Show that if  X and Y  are random variables with a bivariate normal distribution, then 

  xXE  ,   yYE  ,   2var xX  ,   2var yY   and   yxXY cov  (10 Marks) 

QUESTION FOUR (20 MARKS) 

a) Consider two independent random variables  1X and 2X both coming from a population 

with probability density function  
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 Suppose we define two other random variables 211 XXY  and 212 XXY  . Obtain; 

i. the joint probability distribution of 1Y and 2Y  

ii. the marginal probability distribution function 1Y    (10 Marks) 

b) Define a Beta distribution.       (2 Marks) 

c) Obtain the mean and variance of a Beta distribution.    (8 Marks) 

 

QUESTION FIVE (20 MARKS) 

Suppose that 1X and 2X are jointly distributed random variables with probability 

distribution function given by 
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Compute the coefficient of correlation between 1X and 2X  

 


