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1. Introduction  

According to TechSoup Global Network (2012) survey results on cloud computing, over 90% were 

using cloud computing while 79% of the remaining intended to migrate to cloud services. Ateyaro & 

Feyisetan (2011), Rachana & Guruprasad (2014) and Gnanavelu & Gunasekaran (2014) in their 

respective researches showed that data security is one major security concern for cloud computing. In 

analyzing cloud security issues, it has been concluded that the success of its adoption depends on the 
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Addition-Composition Fully Homomorphic Encryption is given in 

this paper to solve data security equation in cloud computation. An earlier 

attempt to solve security problem has been proposed by Craig Gentry, 

who combined additive and multiplicative operations, using lattice-based 

cryptography. Its construction started as a somewhat homomorphic 

encryption scheme that evaluates low-degree polynomials over encrypted 

data. He then modified it to make it bootstrappable and showed that any 

bootstrappable fully homomorphic encryption scheme can be converted 

into a fully homomorphic encryption. Subsequent efforts to improve on 

Craig’s work still favor his approach, i.e.  bootstrapping homomorphic 

cryptosystems with noisy ciphertexts into fully homomorphic 

cryptosystems. The approach in the design of the scheme in this paper is 

based on combining additive and composition properties making it 

complex to compromise. Finally, the scheme enables secure computation 

of cloud data without exposing it to deliberate risk. 
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http://www.ijacademicstudies.com/
mailto:bnyaare@yahoo.com


International Journal of Academic Studies 
IJAS-023-Omollo-2016 

 

208 
 

benefits to risk and threat ratio. Researchers have focused on access controls as a measure to boost 

cloud computing adoptability by consumers. They proposed use of digital ID’s for consumers to 

minimize unauthorized access and address non-repudiation issues in cloud computing services. In 

addressing unauthorized access and tampering, Sasidharan et al., (2011) proposed data-centric 

encryption security approach. Tiwari & Mishra (2012) in their research recommended that developers 

should develop applications that provide encrypted data for security in cloud computing. Gonzalez et 

al., (2012) in their work carried a quantitative analysis of current security concerns in cloud computing 

and found out that there is still need to address those related to secure virtualization. Naruchitparames 

& Gunes (2013) addressed security of data on transit through blind processing whereas Gupta et al., 

(2011) used block cipher method to propose hyper modern cryptography algorithm for confidentiality 

and integrity of data through data encryption but noted that encryption methods are easy to break 

especially when a key is used several times in encryption. Kaur (2012), Tebaa et al., (2013) and 

Gomathisankaran (2012) proposed the use of Fully Homomorphic Encryption scheme as an effective 

solution to cloud computing security. In all these research attempts, cryptography is appreciated as 

better solutions to cloud architecture security challenges. Ravindran & Kaplana (2011) analyzed and 

recommended improvement on Fully Homomorphic Encryption for applications on cloud computing. 

However, the application of Fully Homomorphic Encryption experiences implementation defect due to 

its computational strain onto network and storage resources.  

2. Preliminaries 

In order to understand the derivation in this paper, we need the following fundamental concepts. 

Definition 2. 1 If (G,*) and (H,  ) are groups, then a function f:GH is a homomorphism if  

f(x,y) = f(x)f(y)  Gyx  ,  

Definition 2.2 Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources that can be rapidly provisioned and 

released with minimal management effort or service provider interaction. 

Remark 2.3 This study describes a new technique of addition-Composition Homomorphic Encryption 

which has never been done in literature. There are Three Address Codes which are description of a 

series of strings for example aopb1  where ba,,1 names of parameters are while op is a random 

operator. Normally we have two operations.  
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We can express them as follows: 

1  = ab 

2  = a + 
1  

Where 
1  and 

2  are temporary variables formed by the compiler. 

Definition 2.4 (Mixed-Multiplicative Homomorphic Encryption) 

We consider a large number n such that n = lk where l and k are large prime numbers. We adopt the 

following notations: 

Zl= {a: a≤l} the set of original plain text messages 

Zn = {a: a˂ n} the set of cipher text message 

Ql = {b:b is not an element of Zl} set of encryption dues 

Here the simple encryption is as follows (Updhaye & Khot, 2013); 

If y is encrypted as y = El(a)  b mod n then we can achieve it by picking a random number r and 

creating b = a + rl. So if the encryption y is a number of Zn then we use the key l to recover a Dp(y) y 

mod l. 

Example 2.5 Let l = 17, k=13, n=221=l k and a1=8 and E(8)=59, a2=2 where E(2)=36. Now (59x36) 

mod 221 = 135. Decrypting 135 yields l = 135 mod 17. This is similar to a1a2 = 28 = 16. 

Definition 2.6  Let V be a vector space a non-negative real-valued function : V  is called a 

norm if the following conditions are satisfied: 

 (1) x 0 and x =0 if and only if x=0  xV 

 (2) x =  x x V and   

 (3) yx   x + y  x,yV 

Remark: 2.7 We treated the members of V in a probabilistic sense that is without loss of generality. 

Definition 2.8 A family H of hash functions h: XY is  -pairwise independent if  

 
Y

X
Y

xhxhHh

xx






 2

'

)
1

)'()([Pr(  
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Remark 2.9 A necessary and sufficient condition here is that the collision probability 

Pr Hh [h(x)=h( 'x )] should be at most 
Y

)1( 
on average with an infinitesimally small   since 

Y

2
is not 

good enough. 

Definition 2. 10 Let f(x) and g(x) be two polynomials such that f(x):AB and g(x):BC where A, 

B, C are arbitrary rings. Then the composition of f(x) and g(x) is well defined and given by g(x)  f(x) = 

(g  f)(x) = g(f(x))   x A. 

Example 2.11 Let f(x) = 3x+1 and g(x) =x-2. Clearly, (g  f)(x) = 3x-1. 

Definition 2.12 Consider two ciphers   and  . We define addition-composition homomorphic 

encryption by )(   = )()(   where  is a composite function and  is an additive function. 

Definition 2.13 Given two groups G
1
 and G

2
, we say G

1
 is orthogonal to G

2
 if <G

1
,G

2
>=0. We note 

that taking G
s

1  = 
^

G (C) c where iCi xc  we can consider the orthogonality aspect. First we 

consider Parsevals equality. ])([)( 22

][

^

xGEcG
x

lc


 .

 

3. Results and  Discussions 

First we give some preliminaries before we move to the main results.  

Lemma 3.1  For all a Zl, Dl(El(a)) = a is true. 

Proof: Let y = El(a) and b be the random number used for the message encryption. It is clear that b mod 

n = y ………………………………………………………………………………………..…………..(1) 

Now, since l divides n equation (1) implies that y mod l = (b mod n) mod p =a, for all prime numbers p. 

Example 3.2: Let l = 11, k = 7, n = 77 = l k and a1 = 5 where E(5) = 38 and a2 = 2 where E(2) = 13 

clearly (38x13) mod 77 =  32. When we decrypt 32 we obtain 10 = 32 mod 11. 

Lemma 3.2  For all s, t Zl, D(E(s)t) = D(E(st))….…………………………..……………..(2) 

Proof : We first give E(s)t and E(st) a critical look since multiplication is defined pointwise. E(s)t: To 

do the encryption of S we first choose a1 such that s a1mod l i.e. a1 = 
1 l+s. Encrypting, we obtain 

y1  a1mod n and hence a1 = 
2 n +y1. Therefore 

1 l + s = 
2 n + y1 and solving for y1 we obtain y1 = 

1 l – 
2 n + s = (

1 - 
2 k)l + s …………………………………………………………….………….(3) 
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Now since E(s) = y1 and E(s)t = y1t we have y1t = (t
1  – t

2 k)l + ts which when you decrypt you 

obtain D(E(s)t) = D(y1t) = y1tmod l = st ..……………………………………………….…………….(4) 

E(st): To encrypt st we choose a2 such that st = a2mod l where a2 = 
2 l + st. We then encrypt st as y2 = 

a2mod na2 = 
4 n + y2. Solving for y2 we obtain y2 = ( 3 - 

4 k)l + st which when decrypted yields 

D(E(st)) = D(y2)y2 mod l = st …………...……………………………………………………….…….(5) 

Now D(E(st)) = D(E(s)t) from Eqn. 4 and Eqn. 5. Hence y1t mod l = st = y2 mod p  D(E(s)t) = 

D(E(s)t) with modulus l. This completes the proof. 

For computation of the main result we need the following concepts. 

Lemma 3.3 

Take a real number x from the set y(k1, ……..,km) then any ciphertext C from C(k1,……..,km) can be 

correctly decrypted by the algorithm C -  lcx / . For proof see (Craig, 2009). 

At this point we need to discuss the Gentry Scheme and its implementation (Coron et al, 2011). For 

understanding  x  means rounding up of x,  x means rounding down x and  x  rounding x to the 

nearest integer. 

Lemma 3.4 A family H of hash functions h:XY is pairwise independent if for all x  x’, it holds 

that Prh[h(x) = h(x’)] = 1/ Y . Now it is obvious that h’ is not exactly pairwise independent therefore a 

general definition is necessary. For proof see (Coron, 2011), Lemma 6. 

Theorem 3.5 Let H be a family of  pairwise independent hash functions. Suppose that h  and 

x X are chosen uniformly and independently. Then (h, h(x)) is (  )/
2

1
XY uniform over H x 

Y. 

Proof : Let p HxY denote the probability vector corresponding to a random choice of x X and h H . 

We must show that: 1p
1
 YH  .

2
1p = YH .

2

2
1

2

2
p  

We have )./(1
2

2
1 YH and by Parseval’s equality  
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1
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1
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2)',( '
22

.

1

.

1
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.

1

.

1
)]'()([Pr

.

1

Xxx xx
HhHh YHXH

xhxh
XHXH

xhxh
XH


 

Hence, the statistical distance is bounded as: 








X

Y

YHYHXH
YHp

.

1

.

1

.

1
.1

1
as desired. 

Theorem 3.6 For an odd prime integer q, the hash function family H is  -pairwise independent, with: 






)1(2

2

2

2

1



q .

 

Proof: For each choice of b 'b , the probability Pr )]'()([ bhbhHh  can be expressed in terms of the 

number of zeros of a certain hyperbolic quadratic form in Z .2

q More precisely let A=(a ij ) be 

the x matrix in M  (Z q ) given by a .'

ijijij bb  We have: 










ji

jiijq
h

vuaZvvuu
q

bhbh
,1

2

112
}0:),......,,,.......,{(#

1
)]'()([Pr  

Now the quadratic form Q =   ji jiij vua
,1

has the matrix ,
0

0

2

1








TA

A
which is clearly conjugate to 










0

0

2

1

J

J
where J is the canonical row echelon form of A. It follows that Q is the orthogonal sum of r 

hyperbolic planes, with r the rank of A. Hence, its number of zeros is well-known: 

#{(u 









ji

jiijq vuaZvvu
,1

2

11 }0:),.......,,,......, =q
12212   rr qq 
 

In particular, we get: rh qq
bhbh

11
)]'()([Pr    
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This estimate is quite sufficient for our purposes, except in the case where r = 1. Therefore, we need to 

bound the number of pairs (b, b’) such that the corresponding matrix A is of rank 1. Noting that A has 

all its entries in -2 ,12,......,1    it is enough to bound the cardinality of the set U  of matrices of 

rank 1 in M )( qZ with entries in that interval. To do so, note that a matrix of rank 1 with a nonzero 

upper-left entry is entirely determined by its first line and its first column. If the entries are in {-

2 },12,........,1  
this leaves 2 21 choices for the upper-left entries and (2

221 )1   
choices for the 

remainder of the first line and the first column. Hence, there are less than 2 )1)(1(2   matrices in U  with 

a nonzero upper-left entry (and usually much fewer, since not all first lines and first columns need to 

give rise to matrices with all their entries in the proper interval). The same argument can be applied to 

any other nonzero entry (i,j), leading to the coarse bound: 
 )1(22 2. xU

. 
Now, the number of pairs 

(b,b’) such that the corresponding matrix A is of rank 1 is at most ,. xUX since for any choice of b, 

there are at most xU possible values of b’ such that A is in U .  We can thus bound the value 

 defined by: 

   )
1

)]'()([Pr(
'

2
Y

bhbh
X

Y

bb
h

 


  

as required. Indeed: 

 



 



 

)1(2

2

2

2

2

' '
22

'
2

2

2

11
)

.
(

)
11

()
1

)]'()([Pr(











  

qX

U

qq

UX

q

X

X

q

qqX

q

q
bhbh

X

q

UA
bb

UA
bb

h
bb

 

 Theorem 3.7 Let K be a field and  the principal ideal. Consider p, .  Then w(x) = )(x v(x) 

over K such that 12/4/)13()3/4()(





kn

k

k

kjx 
, for all xin K and w, v and 

 in  . 
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Proof: Since  is a root of f n (x) = x n + 1 modulo p so x n + 1 = (x- )g(x) mod p. Without loss of 

generality we assume that g(x) = x 1n + g 2n x 2n +…….+g 0 . Hence, we obtain the following 

lattice



















 

p

gg

gg

n

.00

....

.1

1.

20

10

 

We need to reduce this lattice. To do this we invoke the lattice reduction algorithm and we obtain w(x) 

= )(x v(x) such that equality (5) holds. Moreover w(x) since u(x)v(x) = p mod f n (x). 

Example 3.8 Let n=4, u(x)=159+8x+4x
2
+2x

3
=[159 8 4 2], p=641407153, v(x)=4027071-204800x-

91520x
2
-40898x

3
. u(x) and f4(x)=1+x

4
 are factored as follows: 

[159 8 4 2] = 2*[[[26912186 1]1][[91823081 1]1]]mod641407153 

[1 0 0 0 1] = [[[26912186 1]1][[91823081 1]1]]mod641407153 

So, 61449496726912186 p  and the public key is ).,( ppk  According to pk, one computes 

g(x) = [382839894 343459750 614494967 1]. To obtain w(x), one constructs lattice M and calls the 

LLL algorithm for M. In fact, one finds the exact solution v(x) for this small example. Without loss of 

generality, assume  4896893[)()()(  xvxxw   3824893 4303943 15954106]. To be simplicity, we 

compute 343459750mod2 pa  and 382839894mod3 pa . 

To find ,)]([ 2x one first computes a ciphertext 

  

 

]12067011530827644373113539224[

5.50.50.50.0[]31595410648934303944896893382[/463576302

463576302

)mod()9614494967*5343459750*4382839894*3(

)mod())(()(2())((











pxd

p

pxmxrxac 

 

Since   2mod))](([2mod)]([,2mod)]([)]([2mod 1

2222 xaxdxxaxxd  [1 1 1 0] 

Thus, one decrypts a ciphertext by using equivalent secret key w(x),[ (x)] .2
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Let R = Z[x]/ )(x where )(x is irreducible over Q[x] but factor modulo t. If  splits exactly into r 

distinct irreducible factors of degree g = n/r = rd /)( i.e. )(x 


r

j

j xj
1

)( . Then by Chinese 

Remainder Theorem, the following R t  Z t [x]/ (f
1
(x)……Z t [x]/f

r
(x)) is a natural 

isomorphism which is obtained. In particular this helps to add and multiply in parallel. In our new 

technique we obtain the addition-composition via tensor products as shown in the main results below. 

Lemma 3. 9 Generally, 



m

i

ii

1

)(:)(   m  

Proof: Definition is well posed and defined. To see this consider  and  and z  where z=Z. 

So    =  mod1

yx  
 

2n  

   =   mod2

yk 
 

2n  

    =  
kyx  1 mod2 n 

  = mod)( 21

ykx  

 n
2  

So  21  …………..  m = ).........( 21 mxxx   ( mod)...........( 21

y

m mn and this completes proof. 

Theorem 3.10 Let (G
1
,……,G m ) be a homomorphic private key encryption scheme with respect to 

addition-composition homomorphism and a set of families of polynomial sized spaces (are private key 

encryption scheme, H i is a probabilistic polynomial-time algorithm and exists a polynomial m(  ) such 

that for every space {C i } i  C, m  polynomial ((  )), keys (e i ,d i ) and l = l(m) single but 

messages b i - b l {0,1} the following holds: 

(i) Correct decryption of addition-composition homomorphically generates encryptions 

D i (H i (C l ,E e (b
1
),……..E e (b l ) = C l (b

1
….b l ) (i=1,……..,m) 

(ii) The length of addition-composition homomorphically generated encryption is independent of l 

and is shorter i.e.  

)(,........(( 1 leeli bEbECH m(n)    Vn  
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Proof: By Lemma 3.9, addition-composition homomorphic encryption is well defined. So by 

Definition 2.10 it is easy to see that D(H )i depends in f i (x) and invoking Theorem 3.7, and Lemma 

3.9, exactness is obtained. Linearity is trivial and the proof is complete. 

Theorem 3.11: Let G ,1
………G m be as a base in the theorem X then for all mN, b{0,1} and 

C(G
1
G

2
), k)G’(l )m

then D
l

k (E ))(
21

bl

GG  = b. 

Proof: First consider the generation key G )( ml l  and encryption E l (G
1
G

2
) and decryption D

l

k (c) : 

output D k (c). 

Next consider the first property of addition-composition encryption. If we consider Theorem 3.10, then 

analogously, D
l

k (E
l

GG 21
(b)) = D k (H (G

1
G

2
) = )(

1
ik

l

i
CD


 where  denotes the addition modulo i 

C ii G iC and C ii G otherwise. Since D i decrypts correctly D k (G i )=0 otherwise D k (G i ) = 1, 

therefore, D
l

k (E
l

GG 21
(b)) = Ci 1 = |C|mod i = b. The next step is to ensure that the scheme is 

semantically secure. 

Theorem 3.12 If (G
1
,…..,G m ) is a semantically secure multiple message private key scheme then (G

'

i , 

E
'

i , D
'

i ) is semantically secure public key scheme. 

Proof: Assume without loss of generality that (G
'

i , E
'

i , D
'

i ) is not semantically secure. Then it implies 

there exists a probabilistic polynomial time adversary A’ of a polynomial )( such that for infinitely 

many nN. Pr
)(),( '

21
m

i lGkGG 
 [A’(G

1
,G

2
E

'

21 GG  (b))=b]<
)(

11

mpi
   b }1,0{R  

The rest follows from Craig, (2009) analogously and this completes the proof. 

4. Conclusions 

The addition-multiplication homomorphic encryption is to the advantage of being usable in real 

time. The composite function element comes in handy since the result of the composite function f(x) is 

encrypted and malicious hosts cannot know the results of the function. For instance in the mobile 

phone technology, the owner of the function gets the encrypted result through the function g(x). For 

instance Richard Omollo is the owner of function h(x) he wants to calculate the input c of Bernard 
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Okelo but he doesn’t want to expose himself as the owner of the function. So he chooses g(x) and 

creates f(x) then sends it to Bernard Okelo. Bernard Okelo hence calculates the result through f(x) 

using his input x and sends the result to Richard Omollo. Bernard Okelo cannot calculate h(x) because 

what he can see is just f(x). Only Richard Omollo can get the real result of h(x) through adding f(x) 

into inverse function i.e. h(x) = g 1 (f(x)). For this particular reason, we have developed some theoretic 

results based on the addition-composition homomorphic encryption. 
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