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Unilameller nanosheets with a lateral dimension of one nanometer have been isolated from a colloidal solution of europium-
containing layered rare-earth hydroxide (LRH) material by the flocculation method. +e nanosheets were achieved by changing
pH of the colloidal solution from 6.7 to 11.5. +e resultant flocculated nanosheets show high efficiency in sorption of fluoride
anions from aqueous media (40mmol/g), providing a potentially useful sorbent material for water purification technology. +e
sorbent material is demonstrated to be reusable for at least ten times without a significant loss of adsorption efficiency. And the
results fit the Langmuir adsorption curve, indicating the chemisorption nature of the nanosheets. Most importantly, the isolated
nanosheets are expected to widen the applicability and flexibility in material synthesis using two-dimensional nanomaterials.

1. Introduction

Synthesis of building blocks used in advancement of material
chemistry is highly affected by size, surface, shape, defect
properties, and anisotropy. Anisotropy is determined by
geometry and structure of self-assembled materials and is
sometimes difficult to achieve in nanomaterials. However,
there has been progress in synthesis of materials such as the
functional oxide nanosheets and exfoliated layered double
hydroxides (LDHs) [1–4]. +e synthesized nanosheets have
been shown to display robust chemical-physical properties
such as lateral dimensions of less than 10 nm, high ad-
sorption rates, great catalysts, and high dispersion rates in
solvents that make them useful building units in the
manufacture of nanodevices [5–7].

Only LDH nanosheets exhibit a positive charge, whereas
all the other nanosheets are negatively charged [7]. De-
lamination of LDH nanosheets has been reported to occur
mainly in formamide solution [8, 9]. It is noted that de-
lamination of LDHs in aqueous media is difficult due to the

high charge density of the LDHs layers and the high anion
contents that result in strong interlayer electrostatic inter-
actions between the sheets and the extensive interlamellar
hydrogen bonding networks, which lead to a tight stacking
of the lamellae [2, 10, 11]. +is limits the use of these
building units especially for aqueous reactions.

Layered rare-Earth hydroxides (LRHs) have a general
formula of Ln8(OH)20(Am− )4/m·nH2O (Ln� rare-earth ions;
A� intercalated anions). LRHs with one type of Ln3+ cations
occupying the octahedral position on the layers can be easily
delaminated into individual nanosheets in aqueous media
[12–17], which is in good contrast to that of LDHs.
Moreover, the sonication of LRHs in the aqueous medium
results in the formation of a colloidal solution, which
consists of a number of unilameller layers of the positively
charged nanosheets of [Ln8(OH)20·nH2O]4+ [12–14]. +ese
lamellar positively charged nanosheets are vital building
units for the synthesis of LRH-containing functional ma-
terials due to their positively charged surfaces. However,
these unilameller nanosheets have not been isolated so as to
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extend the novel applicability of positively charged
nanosheets.

Herein, a simple new method of isolating the unilameller
nanosheets is reported. Stable unilameller nanosheets were
isolated by changing the pH of the colloidal solution from 6.5 to
11.5. +e flocculated unilameller nanosheets show good per-
formance for fluoride sorption from aqueous media, providing
a potentially useful sorbent material for water purification
technology. And we demonstrate the recyclability of this ma-
terial in fluoride separation from the aqueous medium.

It is important to note that fluoride has detrimental
health effects to aquatic life and humans such as cancer,
dental fluorosis, bone resorption, endocrine disruption,
mutations, and brain damage. [18]. Hence, industries that
use fluoride in their processes ought to separate it from
wastewater before disposal of the water to aquatic systems.

In addition, although nanosorbents present a great po-
tential in advancingwater andwastewater treatment efficiency,
most of the nanosorbents reported so far generate secondary
wastes which are equally hazardous to the environment [19].
As such, development of recyclable nanosorbents is a big step
forward in wastewater treatment efficiency.

2. Materials and Methods

2.1. Chemical Materials. Analytically pure KOH, NaOH,
Eu2O3, HCl, NaF, KBr, lacmoid, ethanol, and methanol were
purchased from Alfa Aesar and used without further
purification.

2.2. Preparation of Wet LEuH-Cl. Eu-containing layered
rare-Earth hydroxides (Eu2(OH)5Cl·nH2O) (LEuH-Cl) were
synthesized and characterized according to literature
methods [12]. In brief, 0.1M KOH solution was added to
0.05M EuCl3·6H2O solution with stirring at 24°C. +e re-
sultant mixture was heated to 60°C for 12 h and thereafter
refluxed for 24 h as with magnetic stirring. +e resultant
slurry was washed with deionized water three times in a
centrifuge. +e solid sample was labeled as wet LEuH-Cl.

2.3. Flocculation. +e delamination of fresh prepared wet
LEuH-Cl aggregate material was achieved by sonication
(3min @ 100W) to obtain an aqueous colloidal solution.
Sonication beyond these specifications is noted to result into
broken delaminated nanosheets. +e pH of the aqueous
colloidal solution was adjusted from 6.5 to 11.5 using 1M
NaOH solution that led to flocculation of unilameller LEuH
nanosheets (LEuH-flocs). +e contents were centrifuged at
2000 rpm, and the residue was washed with distilled water
four times before a final wash with acetone followed by
vacuum drying at 40°C.

2.4. Characterization. +e OH content of solid samples was
determined titrimetrically by neutralization backtitration
after dissolution of the samples in a 0.1N standard H2SO4.
Measurements of diffraction patterns of the 40°C dried
samples were achieved using a Rigaku XRD diffractometer

machine (6000) conditioned at 30mA, 40 kV, Cu-Ka
(λ� 0.154 nm), and with a scan step of 0.01° measured be-
tween 3° and 70°. Surface morphology was observed using a
SEM (Zeiss Supra 55) machine simultaneously connected to
an EDX detector. In addition, atomic forces were deter-
mined using a Bruker AFM machine (A3A) in order to
determine lateral dimensions of nanosheets isolated. Cross-
sectional transverse morphological study was done using a
HRTEM machine (Hitachi H-800). High sensitivity ele-
mental analysis in aqueous solutions was performed using
ICP-AES machine (ICPS-7500). Solid samples were first
digested using aqua regia solutions before ICP-AES analysis.
+e pore volumes and specific surface area studies for solid
samples were done using BET and BJH methods with
Quantachrome Autosorb1C VP machine. Before such an-
alyses were done, the solid samples were first degassed at
100°C for 6 hrs.

2.5. Adsorption Experiments. +e efficiency of fluoride
sorption by LEuH-flocs nanosheets was compared to the
sorption efficiency of LEuH-Cl aggregates. To a known
concentration of fluoride ions in aqueous media, 0.4 g of test
sample was introduced and then the test solution was kept
stirring for 1 hour. After that, the nanocomposites were
centrifuged down and the supernatant solution was tested
for fluoride concentration colorimetrically [20]. +e pelleted
sample was dried and calcined at 500°C for 24 hours to
remove the adsorbed fluoride, and the material was
reconstituted in a NaCl solution to regenerate the LEuH-Cl
material through the “memory effect” method of hydro-
talcites [7]. Direct adsorption of the fluoride ions by the
calcined LEuH-flocs was also determined.

2.6. Kinetic Studies

2.6.1. Determination of Adsorption Rate and Equilibrium.
Ten samples of fluoride ions dissolved in deionized water
(100 ppm) were treated with 0.2 g of LEuH-flocs for 0, 1, 2, 3,
4, 5, 6, 8, 10, and 15 minutes. After each experiment, the
LEuH-flocs were separated and the resultant supernatant
was tested for fluoride concentration. A similar experiment
was repeated for the LEuH-Cl aggregate material.

2.6.2. Adsorption Isotherms. +e test samples (0.2 g) were
stirred with 50ml solutions having different concentrations
(1, 5, 10, 20, 50, 100, 200, 300, 400, 500, and 1000 ppm) of
fluoride anions for 30 minutes to insure equilibrium. +e
nanocomposites were centrifuged, and the supernatant was
tested for fluoride concentration.+e amount of fluoride up-
taken per gram of the LEuH-flocs (q) was determined
according to the following equation, where C0 is the initial
fluoride concentration, C is the concentration of the
equilibrated final solution, V is the volume of the aqueous
phase, and m is the mass of the adsorbent in the system:

q �
C0 − C( V

m
. (1)
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3. Results and Discussion

3.1. Characterization of the Nanocomposite Materials.
Adjusting the pH of a colloidal solution, sonicated from
freshly prepared wet LEuH-Cl aggregates, from pH� 6.5 to
pH� 11.5 resulted into flocculation of unilameller LEuH
nanosheets (LEuH-flocs) (Figure 1). During the pH ad-
justment experiments, there was no observable change be-
tween pH∼4.5 and ∼9.5. However, below pH∼4.5, the
nanosheets decomposed to individual elements. Chemical
analysis of LEuH-flocs reveal an elemental composition of
Eu8(OH)20(CO3)0.67(H2O)4.4Cl3.15, which is simplified as
[Eu8(OH)20(H2O)4.4]Cl4. +e composition resembles that of
the starting material (LEuH-Cl aggregates).

SEM images of both LEuH-flocs nanosheets and LEuH-
Cl aggregates show similarity in plate-like morphology with
the former exhibiting unilameller platelets, while the latter is
organized in layers ranging from 20 nm to 65 nm (Figure 2).
Energy dispersive X-ray spectroscopy (EDX) images provide
further evidence of composition similarity (Figure 2).
However, TEM images show the unilameller nature of the
LEuH-flocs (Figure 2).

+e unilameller character of the LEuH-flocs can also be
clearly distinguished from the layered character of LEuH-Cl
aggregates by HRTEM images (Figure 3). And the selected
area electron diffraction (SAED) patterns of LEuH-flocs are
much clearer than that of LEuH-Cl aggregates, indicating the
high crystallinity of the LEuH-flocs nanosheets (Figure 3).
Despite the crystallinity differences, it is evidently clear from
the SAED patterns that atomic arrangement remains the
same in both samples (Figure 3).+e atoms are arranged in a
pseudohexagonal symmetry with a unit fundamental cell of
af � 3.7 Å. It can be calculated that d100 � 2√3af � 12.8 Å and
d010 � 2af � 7.4 Å. +ese particular atomic distances are
further verified by XRD diffraction patterns shown in
Figure 4.

+e LEuH-Cl aggregate sample exhibits XRD patterns
that can be indexed as a single orthorhombic unit cell with
lattice parameters of a� 12.90 Å (d100), b� 7.52 Å (d010), and
c� 8.63 Å (d001). +ese values clearly correspond to the
calculated values from SAED patterns in Figure 3. Since the
LEuH-flocs exist as unilameller layers, it is almost impossible

to distinguish the d100 and d010 reflections in the XRD
patterns; however, the d001 � 7.6 Å reflection is clear with a
very high intensity indicating the nanosheets to lie on their c
plane. Nevertheless, there is no restacking because no d00l
harmonics were observed. And it is worth noting that the
results of LEuH-Cl aggregates are in good agreement with
literature [17].

+e AFM images of a colloidal solution for both LEuH-
flocs and LEuH-Cl aggregates dispersed on wafer plates
show the width of LEuH-flocs to be approximately 1 nm,
while LEuH aggregates are approximately 26 nm (Figure 5).
Dispersion of the LEuH-flocs nanosheets in water at pH� 7
results into a colloidal solution indicating the nanosheets to
maintain both their nanoscale size and their charge
(Figure 5(c)).

FTIR vibrations show an intense absorption band at
3494 cm− 1 attributed to O-H bond, v(OH), stretching in
both the LEuH-flocs nanosheets and LEuH-Cl aggregates
(Figure 6). +e vibration band at 1634 cm− 1 is due to the
bending mode of both surface and interlayer water (see
Figure 7 for water contents). Two sharp bands at 1511 and
1454 cm− 1 in LEuH-Cl aggregates are attributed to CO3

2−

vibrations in a layered structure [13]. However, there exists a
shift in these CO vibrations and a decrease in sharpness
which is indicative of the lack of stacking in the LEuH-flocs
nanosheets [13]. Two shoulder peaks at 848 and 818 cm− 1 are
due to interlayer chloride anions, while the bands at 638 and
535 cm− 1 are attributed to Eu-O stretching. In addition, the
O-C-O bending mode may have shifted from 526 to
535 cm− 1 due to lack of stacking. Furthermore, the band at
1374 cm− 1 in LEuH-flocs and LEuH-flocs + fluoride might
arise from adsorbed CO3

2− .
+ermogravimetric analysis of LEuH-flocs and LEuH-Cl

aggregates clearly show the difference in interlayer water
content of the two samples (Figure 7). Interlayer water is
used in stacking of layers together by creating hydrogen
bonding networks with anions within the layers. However,
the LEuH-flocs has very little of these water content indi-
cating their unilameller property (Figure 7).

+e isolation of LEuH-flocs nanosheet is further verified
by the difference in pore volume as compared to the LEuH-
Cl aggregates (determined by Brunauer–Emmett–Teller

Delamination
water

pH = 11.5

Unilameller LEuH
nanosheets

LEuH-Cl aggregate
sample LEuH-Cl Colloidal

Soln. pH = 4.5–9.5

Figure 1: +e flocculation process generating LEuH-flocs nanosheets through pH adjustments.
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(BET) and Barrett–Joyner–Halenda (BJH) measurements)
(Figure 8), whereas the pores in LEuH-Cl aggregates have an
average pore volume of 0.34 cc/g which is a characteristic of

interparticular porosity and the LEuH-flocs nanosheets
exhibit an average pore volume of 0.11 cc/g that is a char-
acteristic of lack of porosity. In addition, after the BET
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Figure 2: SEM and EDX images of (a) LEuH-Cl aggregates, (b) LEuH-flocs nanosheets, (c) LEuH-flocs + fluoride (Si and Pt come from the
silicon wafer used in SEM analysis), and (d) TEM image of LEuH-flocs.
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experiments, the LEuH-flocs do not regain their original
position as can be seen from the low pressure area in the
isotherm where the two graphs (adsorption/desorption)
should be a single line if the original structure is regained
[21]. +is clearly indicates the unstacked nature of the
unilameller LEuH-flocs which lie on their c axis and a change
in pressure leads to an increase in their randomness.

3.2. Application of the Unilameller LEuH-Flocs Nanosheets in
Fluoride Adsorption Experiments. Ion exchange reaction of
unilameller LEuH-flocs nanosheets in a fluoride aqueous
solution is proposed to proceed via equation (2). +e
reaction mechanisms are schematically represented in
Figure 9. +e fluoride sorption reaction was monitored

titrimetrically using chloride concentration in the super-
natant solution after the ion exchange reactions. +e re-
action was found to complete in 2 minutes:

Eu8(OH)20 H2O( n Cl4(s) + 4NaF(aq)

⟶ Eu8(OH)20 H2O( n F4(s) + 4NaCl(aq)

(2)

+e sorption experiments of fluoride anions from
aqueous media were carried out with the unilameller LEuH-
flocs nanosheets and compared to LEuH-Cl aggregates for 6
minutes (Figure 10). Unilameller LEuH-flocs nanosheets
had the highest fluoride loading capacity of 40mmol/g as
compared to ∼20.0mmol/g exhibited by LEuH-Cl aggre-
gates (Figure 10). Note that LDH-Cl (Mg/Al with a molar
ratio of 0.67 : 0.33, respectively) materials exhibit adsorption

(a)

(b)

(c)

Figure 3: HRTEM and SAED images of (a) LEuH-Cl aggregates, (b) LEuH-flocs nanosheets, and (c) LEuH-flocs + fluoride ions.
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Figure 5: AFM diagrams of (a) LEuH-Cl aggregate material, (b) LEuH-flocs nanosheets, (c) the dispersion of an incident light by an aqueous
colloidal solution of LEuH-flocs nanosheets (pH� 7) demonstrating “the Tindal effect” of the dissolved powder, (d) AFM analysis of LEuH-
Cl aggregates, and (e) AFM analysis of LEuH-flocs nanosheets.
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capacities of 3.3mmol/g [22]. Hence, the newly synthesized
unilameller LEuH-flocs provide an effective and fast
chemisorption recyclable nanosorbent material reported so
far for fluoride separation from water.

+e sorption mechanisms in unilameller LEuH-flocs
nanosheets are purely attributed to chemisorption as its data
fit perfectly with the Langmuir model (Figure 11) [23]. +is
is further supported with the type iii isotherm recorded with
its BET isotherms (Figure 8). In contrast, LEuH-Cl aggre-
gates sorption mechanisms could be attributed to both
physisorption mechanism and chemisorption mechanisms

due to its type ii BET isotherm and the low R2 values of the
Langmuir model [21]. Specifically, the adsorption in LEuH-
Cl (hydrotalcite-like compounds) is initiated at the edges
(physisorption mechanism) followed by ion exchange
(chemisorption).

Anion adsorption behaviour of hydrotalcite-like com-
pounds has been previously reported to occur at their edges
through physisorption mechanisms [24–26]. However, de-
lamination of LEuH-Cl aggregate materials into unilameller
LEuH-flocs nanosheets provides a new pathway in which the
exposed chloride ions are easily exchanged with fluoride ions

LEuH-F

LEuH unilameller
Flocs

LEuH-Cl
aggregates

LEuH spinnels

(a)

(b)

(c)

(f)
(g)

(e)

(d)

Figure 9: Schematic diagram representing the fluoride sorption process using layered rare-Earth hydroxides unilameller flocs as sorbents:
(a) flocculation, (b) self-assembly, (c) fluoride adsorption, (d) calcination, (e) fluoride adsorption, (f ) chloride adsorption, and (g)
calcination.
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Figure 10: Kinetic studies for fluoride sorption from aqueous solutions by layered rare-Earth hydroxides: (a) LEuH-Cl aggregates; (b)
LEuH-flocs nanosheets. qe maximum adsorbed amount; pH� 7, temperature� 298K, and mass of sorbent� 0.2 g.
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from aqueous media. +e reaction is fast and effective and
has a higher fluoride loading rate than all other reported
fluoride adsorbents [27].

+e chemisorption process is further verified by the
FHF− covalent bond that shows FTIR vibrations at 578 cm− 1

(Figure 6) [28, 29]. +e chemisorption process does not
interfere with the surface morphology of the unilameller
LEuH-flocs nanosheets as is depicted in the images taken
after the adsorption experiments by both SEM and HRTEM
(Figures 2 and 3). In addition, the XRD patterns of the
fluoride-adsorbed unilameller LEuH-flocs nanosheets have
similar peaks to the starting materials LEuH-flocs (Figure 4).

After calcination at 500°C to remove the adsorbed
fluoride ions, the resultant LEuH-spinels were reused in
fluoride adsorption for at least ten times giving similar
adsorption capacities (Figure 12). It also noted that the
spinels could also be dispersed in a NaCl solution (1M) to
reconstruct to the original LEuH-Cl starting material
(Figure 13). It is however observed that when LEuH calcined
spinels are used directly to adsorb fluoride ions, the resultant
morphology is different from LEuH-flocs material
(Figure 13(d)). However, this change in morphology does
not affect adsorption capacity as can be seen from subse-
quent reuse experiments (Figure 12).

4. Conclusions

In summary, we have been able to isolate unilameller
nanosheets from a colloidal solution of europium-con-
taining layered rare-Earth hydroxide material (LEuH-Cl) by

changing its pH from 6.5 to 11.5 in an aqueous medium.+e
resultant unilameller LEuH-flocs nanosheets exhibit fluoride
chemisorption ability of 40mmol·g− 1 as compared to LEuH-
Cl aggregates of ≈20.0mmol·g− 1 and LDH-Cl aggregates of
3.3mmol·g− 1. And the chemisorption reaction is complete in
two minutes with the resultant adsorbent being reusable
after calcination at 500°C.
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