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Abstract

Spectrally bounded compact elementary operators on dense irreducible subalgebras of C∗-algebras are characterized. Also,
it is shown that left multiplications, right multiplications, generalized derivations and basic elementary operators are spec-
trally bounded compact elementary operators. Furthermore, several properties of spectrally bounded compact elementary
operators such as completeness, convergence, continuity and total boundedness in a general Banach setting are outlined.
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1. Introduction

The study of elementary operators has become an active area of research in operator theory [2]. The elementary operator,
being an operator on the Banach space B(H), has attracted much attention of many mathematicians. Some results about
the spectra, the numerical ranges and norms of elementary operators were studied in [2, 6]. Actually, the norm of an
elementary operator is traced back to the works of Stampli [30] who worked on the norms of derivations. In [8], the norm
of an elementary operator was determined to be

sup

{∥∥∥∥∥
n∑
i=1

AiXBi

∥∥∥∥∥ ; X ∈ B(H); ‖X‖ ≤ 1

}
= sup

{∥∥∥∥∥
n∑
i=1

AiUBi

∥∥∥∥∥ : UU∗ = U∗U = I; U ∈ B(H)

}
.

In addition, Okelo [22] determined the norm a two-sided multiplication operator on C∗-algebra. He showed that for any
complex Hilbert space H, if TA,B : B(H) → B(H) such that TA,B(X) = AXB ∀ X ∈ B(H) then ‖TA,B(X)‖ = ‖A‖‖B‖.
Furthermore, Okelo [23] investigated the orthogonality of elementary operators and gave the necessary and sufficient
conditions for their normality. Also, in [24] the author considered the orthogonality of elementary operators when they
are implemented by norm-attainable operators on a Hilbert space. In particular, the study of elementary operators has
been developed in two branches; namely, spectral properties and structural properties. Therefore, a systematic study
of elementary operators was started by Lumer and Rosenblum [14] who studied the spectral properties of elementary
operators. Later, Vala [32] pioneered the study of compactness of elementary operators and proved that a linear mapping
T 7→ ATB is compact if and only if A and B are compact operators on a Banach space. In connection to compactness of
operators, Akemann and Wright [1] gave the necessary and sufficient conditions for a given C∗-algebra to admit a non-
zero compact or weakly compact derivations; that is, a C∗-algebra admits a non-zero compact derivations if and only if it
contains nonzero finite dimensional central projections. Fong and Sourour [10] characterized compactness of elementary
operators on B(H), where B(H) is set of all bounded linear operators on separable Hilbert Space H, and they showed
that an elementary operator on B(H) is compact if and only if it has representation TA,B(X) =

∑n
i=1AiXBi for Ai and

Bi being compact. Saksman and Tylli [27] studied a number of structural properties of elementary operators on Banach
space setting such as basic sequence techniques applied in Banach spaces and weak compactness or strict singularity of a
basic two sided multiplication operator. These properties include the norms and spectra of elementary operators in various
settings. A detailed study of spectral boundedness of elementary operators was introduced by Mathieu [15] in which the
results were motivated by their connections to the non-commutative Singer-Wermer conjuncture and Kaplansky’s problem
of invertibility-preserving operators. Bresar and Turovskii [3] studied elementary operators on Banach algebras that are
simultaneously compact and they considered an algebra A over a field K, where A ∈ A is of completely finite rank if both
LA and RA are finite rank. Denote by Acf the set of all completely finite rank elements of A. In [3], it was shown that if
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Acf is the sum of all finite dimensional ideals of A, then every element in Acf generates a finite dimensional ideal in A.
Fialkow [9] presented a number of results on spectral properties of elementary operators where a new expression for the
essential spectra of an elementary operator was derived, that is, σe(RAB) = σH(A) ◦ σHe

(B) ∪ σHe
(A) ◦ σH(B). Shulmann

and Turowska [29] discussed properties of operators on Hilbert spaces which share similar properties with elementary
operators on B(H). This is because TA,B(X) =

∑n
k=1 LAk

RBk
has a formal adjoint T ∗A∗,B∗(X) =

∑n
k=1 LA∗kRB∗k which turns

into a proper adjoint if restricted to the ideal S2 of Hilbert Schmidt operators. These properties include approximate
intertwinings, the intersection of the kernel of adjoint, ranges of derivations and commutators, spectral subspaces and
Fuglede type theorems among others.

The study of positive maps in operator theory has also attracted considerable attention from many researchers. Huruya
and Tomiyama [20] studied completely bounded maps of C∗-algebras and proved that a completely positive map is com-
pletely bounded. For example, a derivation is completely bounded but not completely positive. Also, every bounded linear
map of C∗-algebra into a commutative C∗-algebra is completely bounded. Let A and B be a C∗-algebras, it is shown [20]
that for a fixed C∗-algebra A, every bounded linear map of A into an arbitrary C∗-algebra B is completely bounded if and
only if A finite dimensional. Furthermore, Huruya and Tomiyama [20] proved that for a fixed C∗-algebra B every bounded
linear map of an arbitrary C∗-algebra A into B is completely bounded if and only if every irreducible representation of
B is finite dimensional with bounded degree. Curto and Mathieu [5] gave a characterization of spectral boundedness of
generalized inner derivation on unital Banach algebra to be spectrally bounded. Furthermore, Mathieu [17] showed that
a derivation on a Banach algebra A is spectrally bounded if and only if it maps it into RadA. Mathieu [19] gave a review
on the recent advances in the study of elementary operators that have not been explored before. The main question being
when an elementary operator is spectrally bounded or spectrally isometric. Therefore, the study of spectral characteriza-
tions of operators has attracted a lot of research in past years. In [16], it was shown that every spectrally bounded operators
need not to be continuous in general hence it is important to study spectral boundedness of compact elementary operators
on dense irreducible subalgebras. Semrl [28] studied spectrally bounded linear maps on B(H) and showed that if H is a
separable infinite dimensional Hilbert space, then T : B(H)→ B(H) is a unital surjective linear spectrally bounded map
which is either an automorphism or anti-automorphism. Furthermore, Lin and Mathieu [13] proved that every unital
bounded linear mapping from a purely infinite C∗-algebra of real rank zero into a unital Banach algebra which preserves
elements of square zero is a Jordan homomorphism. In the results, they used unital surjective spectral isometries as
Jordan homomorphisms.

As we have seen that a lot of research has been done on the structural properties of elementary operators but there are
still open problems on spectral boundedness of compact elementary operators on dense irreducible subalgebras. In this
paper, we characterize spectral boundedness of compact elementary operators on dense irreducible subalgebras.

2. Preliminaries

In this section, we outline preliminary concepts which are useful in the sequel. Let A be a Banach algebra. We denote a
dense irreducible C∗-subalgebra of A by ADIR. The algebra of all compact elementary operators is denoted by C(E). Also,
we denote the algebra of all spectrally bounded compact elementary operators by CSBD(E).

Definition 2.1. ([21], Section 2) Consider a C∗-algebra A and let T : A → A, T is called an elementary operator if it
has the following representation: TA,B(X) =

∑n
i=1AiXBi ∀ Ai, Bi are fixed in A orM(A) is multiplier algebra of A. For

A,B ∈ B(H), we define particular elementary operators as follows:

(i). The left multiplication operator LA : B(H)→ B(H) by LA(X) = AX, ∀ X ∈ B(H).

(ii). The right multiplication operator RB : B(H)→ B(H) by RB(X) = XB, ∀ X ∈ B(H).

(iii). The generalized derivation (implemented by A,B) by δA,B(X) = LA −RB , ∀ X ∈ B(H).

(iv). The basic elementary operator (implemented by A,B) by MA,B(X) = AXB, ∀ X ∈ B(H).

(v). The Jordan elementary operator (implemented by A,B) by UA,B(X) = AXB +BXA, ∀ X ∈ B(H).

Definition 2.2. [12] Let V be a linear vector space. A non-negative real valued function ‖.‖ : V → R is called a norm on V
if it satisfies the following conditions:

(i). ‖a‖ ≥ 0 and ‖a‖ = 0 if and only if a = 0 for all a ∈ V.

(ii). ‖αa‖ = |α|‖a‖ for all a ∈ V and α ∈ K.
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(iii). ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for all a, b ∈ V.

The ordered pair (V, ‖.‖) is called a normed space.

Definition 2.3. ( [4], Definition 4.1) If A is any C∗-algebra and Φ : A → B(H) is a representation then Φ is irreducible if
Φ(A) is an irreducible subalgebra of B(H).

Definition 2.4. ( [11], Definition 2.2) Let A and B be complex Banach algebras. A linear mapping T : A → B is called
spectrally bounded if there exists a constant M ≥ 0 such that r(Tx) ≤Mr(x) and spectrally infinitesimal if r(T (x)) = 0, for
all x ∈ A. If r(T (x)) = r(x), for all x ∈ A we say that T is a spectral isometry. If r(x) = 0, then x is called quasi-nilpotent.

Definition 2.5. ([31], Definition 1.3) A Banach space Ω is said to have the approximation property for every compact subset
C of Ω and for every ε > 0 there exists a finite rank operator T ∈ B(Ω) such that ‖Tx− x‖ < ε for each x ∈ C.

Definition 2.6. ([7], Proposition 2.2.1) The radical of an algebraA is defined to be intersection of the maximal left ideals of
A denoted by radA. An algebra (non-unital) is radical if radA = 0 then radA is an ideal inA andA/rad(A) is a semi-simple
algebra.

Remark 2.1. An elementary operator leaves each ideal of A invariant hence it is close at hand to use primitive ideals and
dense algebras of operators to study properties of it [6].

Definition 2.7. ( [25], Definition 4.2.12) A representation T of an algebra A on a linear space X is called strictly dense if
whenever x1, x2, ..., xn is a finite list of linearly independent vectors in X and y1, y2, ..., yn is a list of vectors in X then there
is an element a ∈ A with Taxj = yj for j = 1, 2, ..., n.

Definition 2.8. ( [25], Definition 4.1.17) Let A be an algebra and let X be a linear space. Then X is called an A-module if
there is a fixed representation T : A → B(X) and Tax denoted by ax, a ∈ A and x ∈ X. If A and X are both normed and the
representation T : A → B(X) is continuous then the corresponding module is called a left A-module.

Remark 2.2. If X is a both a left and right A-module and if the two module actions satisfy a(xb) = (ax)b ∀ A x ∈ X then
is called A-bimodule [25].

Definition 2.9. Let TAi,Bi
∈ C(E) for the set of all spectrally bounded compact operators. We define

‖TAi,Bi
‖σ = inf{M ≥ 0 |r(TAi,Bi

(X))| ≤Mr(X)},

for all X ∈ ADIR and ‖TAi,Bi‖σ is the spectral operator norm of TAi,Bi .

Definition 2.10. Let TAi,Bi
: ADIR → BDIR be a spectrally bounded operator, then TB∗i ,A∗i : B∗DIR → A∗DIR defined by

TB∗i ,A∗i S = S ◦ TAi,Bi , for S ∈ B∗DIR is said to be the spectral adjoint of TAi,Bi .

Definition 2.11. A linear mapping TAi,Bi
: ADIR → ADIR is said to:

(i). compress left essential spectrum if σle(TAi,Bi
(X)) ⊆ σle(X), ∀ X ∈ ADIR.

(ii). compress right essential spectrum if σre(TAi,Bi(X)) ⊆ σre(X), ∀ X ∈ ADIR.

(iii). compress semi-Fredholm spectrum if σsf (TAi,Bi
(X)) ⊆ σe(X), ∀ X ∈ ADIR.

Definition 2.12. A linear mapping TAi,Bi : ADIR → ADIR is surjective up to compact operators if ADIR = Ran(TAi,Bi) +

KDIR and hence is called essentially spectrally bounded if there exists constant M such that re(TAi,Bi
(X)) ≤ Mre(X), for

all X ∈ ADIR.

Definition 2.13. Let ADIR and BDIR be two dense irreducible subalgebras. Let I ⊆ ADIR and J ⊆ BDIR be closed proper
ideals of dense irreducible subalgebras ADIR and BDIR respectively. A linear mapping TAi,Bi

: ADIR → BDIR is surjective
modulo J if for every Y ∈ BDIR, there exists X ∈ ADIR such that Y − TAi,Bi

(X) ∈ J . We define the induced mapping
T̂Ai,Bi : ADIR/I → BDIR/J by T̂Ai,Bi(X + I) = TAi,Bi(X) + J , X ∈ ADIR.

Definition 2.14. Let TAiBi : ADIR → ADIR. The spectral operator norm is defined by

‖TAiBi(X)‖σ = inf{M ≥ 0 r(TAiBi(X)) ≤Mr(X), X ∈ ADIR}.

Definition 2.15. A linear mapping TAi,Bi
: ADIR → BDIR is said to be spectrally compact if TAi,Bi

(CDIR) is compact in
ADIR where CDIR = {X ∈ ADIR : r(X) ≤ 1} and CDIR ⊆ ADIR.

Definition 2.16. A representation Φ : ADIR → C(E) is irreducible provided the C∗-subalgebra Φ(ADIR) is irreducible in
C(E), that is, there are no subalgebra for Φ(ADIR) that are reducing except for trivial ones {0} and ADIR.
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3. Spectrally bounded compact elementary operators

In this section, we characterize spectral boundedness of compact elementary operators on dense irreducible subalgebras
of Banach algebra A. We begin with the following proposition:

Proposition 3.1. Consider LA, RB and δA,B ∈ C(E). Let ADIR be a unital C∗-subalgebra of A, then the following are
equivalent:

(i). LA and RB are both spectrally bounded.

(ii). δA,B is spectrally bounded.

Proof. (i)⇒ (ii). From Definition 2.1, the left multiplication elementary operator is denoted by LA = AX for all X ∈ ADIR
and A fixed in ADIR. It follows from [26] Proposition 2.1 that for some constant M ≥ 0, r(AX) ≤ Mr(X) holds hence
LA is spectrally bounded. Consequently, RA = XA must be spectrally bounded. It is also known that inner derivation
δA ∈ Rad(ADIR). So, if A = B then RB is spectrally bounded and if A − B = C then RA−B = RC which is intuitively
spectrally bounded. The generalized derivation can be expressed as:

δA,B(X) = LA(X)−RB(X) = RA−B(X) + LA(X)−RA(X) = X(A−B) +AX −XA = XA−XB +AX −XA = AX −XB.

Let a canonical homomorphism ϕ : ADIR → ADIR/Rad(ADIR) be a spectral isometry such that there exists a linear map
R : ADIR → ADIR with RADIR ⊆ Rad(ADIR). Therefore, if N ∈ CSBD(E) then R + N ∈ CSBD(E) and r(δA,B(X)) =

r(LA(X)−RB(X)) = r(RA−B(X) + LA(X)−RA(X)) holds. Hence, r(δA,B(X)) ≤Mr(X) must be spectrally bounded.
(ii) ⇒ (i). We suppose that δA,B is spectrally bounded, then r(δA,B(X)) ≤ Mr(X) for some constant M ≥ 0. We need to
prove that LA and RB are both spectrally bounded, that is, r(LA(X) ≤ Mr(X) and r(RB(X) ≤ Mr(X) for some constant
M ≥ 0. Let a canonical homomorphism ϕ : ADIR → ADIR/Rad(ADIR) be a spectral isometry such that B is central
modulo the Rad(ADIR), thus

r(δA,B) = r(AX −XB) = r(ϕ(A)ϕ(X)− ϕ(X)ϕ(B)) = r((ϕ(A)− ϕ(B))ϕ(X)) = r(ϕ(X)(ϕ(A)− ϕ(B)))

= r(ϕ(B)ϕ(X)− ϕ(X)ϕ(A)) = r(BX −XA), X ∈ ADIR.

Therefore, r(δB,A(X)) = r(δA,B(X)) ≤ Mr(X) is spectrally bounded. Now, suppose that RB is not spectrally bounded.
Then there exists an irreducible representation Φ of ADIR such that Φ(B) 6= IC. Let a vector v be in the representation
space such that {v, Φ(B)v} is linearly independent. Since Φ is a continuous representation of ADIR on a Banach space Ω,
then from Jacob density theorem, there exists X,E ∈ ADIR such that Φ(X)v = 0, Φ(X)Φ(B)v = 0, Φ(E)Φ(B)v = Φ(B)v,
Φ(E)v = −nv, whenever n ∈ N. Furthermore, from Sinclair’s theorem, we assume that E is invertible such that

(Φ(A)Φ(E)Φ(X)Φ(E)−1 − Φ(E)Φ(X)Φ(E)−1Φ(B))v = nv.

Hence, r(AEXE−1 − EXE−1B) ≥ n which contradicts the hypothesis that r(AEXE−1 − EXE−1B) ≤ Mr(EXE−1) =

Mr(X) and for some M ≥ 0. Thus, RB must be spectrally bounded. Analogously, LA is also spectrally bounded. Therefore,
LA and RB are both spectrally bounded.

Proposition 3.2. Let LA : ADIR → ADIR be compact and spectrally bounded, then LA maps into the radical of ADIR if
and only if ADIR is a C∗-subalgebra of A with identity.

Proof. Let LA be compact, spectrally bounded and maps into radical of ADIR. We prove that ADIR is a C∗-subalgebra of
A with identity. Let X ∈ ADIR such that (I − X)−1 =

∑∞
n=0X

n and ‖X‖ = γ < 1 with Ci =
∑i
n=0X

i. Indeed, (Ci) is a
cauchy sequence converging to some element E =

∑∞
n=0X

n since for i < j it holds that

‖Ci − Cj‖ ≤
j∑

n=i+1

‖X‖n ≤ γi+1

1− γ
.

Now, XCi = Ci+1 − I and E(I −X) = (I −X)E = I and hence ADIR is a C∗-subalgebra of A with identity.
Conversely, let ADIR be a C∗-subalgebra with identity. We prove that LA is compact, spectrally bounded and maps into
radical of ADIR. It follows from Proposition 3.1, LA is compact and spectrally bounded such that r(AX) ≤ Mr(X) for
some constant M ≥ 0. In addition, to show that LA maps into the rad(ADIR) then we need to prove that intersection of
all maximal left ideals must be invertible in ADIR and any invertible element of ADIR is contained in the intersection of
all left maximal ideal. We begin with showing that the intersection of all maximal left ideals must be invertible in ADIR.
Suppose that X is in the intersection of all maximal left ideals of ADIR. If L = I − AX is not invertible then ADIRL is a
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left ideal. This is because every left ideal of ADIR is contained in a maximal left ideal. Now, AX ∈ L0 and I − AX ∈ L0

which implies that I ∈ L0 where L0 is some left ideal. Therefore, L0 = ADIR which is a contradiction. Next, we show that
any invertible element of ADIR is contained in the intersection of all left maximal ideal. Suppose that I −AX is invertible
for all A ∈ ADIR. If X is not in the intersection of all maximal left ideals, it means that there exists a maximal left ideals
L0 such that X /∈ L0. Therefore, L0 + ADIRL = ADIR and I − AX ∈ L0, but this gives a contradiction because I ∈ L0.
Hence, LA maps into the radical of ADIR.

Lemma 3.1. Let RB : ADIR → ADIR be compact and spectrally bounded, then RB maps into the radical of ADIR if and
only if ADIR is a C∗-subalgebra with identity.

Proof. Let RB be compact, spectrally bounded and maps into radical of ADIR. We prove that ADIR is a C∗-subalgebra of
A with identity. It follows analogously from Proposition 3.2 that ADIR is C∗-subalgebra of A with identity.
Conversely, let ADIR be a C∗-subalgebra with identity. We prove that RB is compact, spectrally bounded and maps into
radical of ADIR. It follows from Proposition 3.1, RB is compact and spectrally bounded such that r(XB) ≤ Mr(X) for
some constant M ≥ 0. In addition, to show that RB maps into the rad(ADIR) then we need to prove that intersection of
all maximal right ideals must be invertible in ADIR and any invertible element of ADIR is contained in the intersection
of all right maximal ideal. We begin with showing that the intersection of all maximal right ideals must be invertible in
ADIR. Suppose that X is in the intersection of all maximal right ideals of ADIR. If R = I − XB is not invertible then
RADIR is a right ideal. This is because every right ideal of ADIR is contained in a maximal right ideal. Now, XB ∈ R0

and I −XB ∈ R0 which implies that I ∈ R0 where R0 is some right ideal. Therefore, R0 = ADIR which is a contradiction.
Next, we show that any invertible element of ADIR is contained in the intersection of all right maximal ideal. Suppose
that I −XB is invertible for all B ∈ ADIR. If X is not in the intersection of all maximal right ideals, it means that there
exists a maximal right ideals R0 such that X /∈ R0. Therefore, RADIR +R0 = ADIR and I −XB ∈ R0, but this gives a
contradiction because I ∈ R0. Thus, RB maps into the radical of ADIR.

Theorem 3.1. Let MA,B : ADIR → ADIR be compact and spectrally bounded, then MA,B maps into the radical of ADIR if
and only if ADIR is a C∗-subalgebra of A with identity.

Proof. Suppose that MA,B is compact, spectrally bounded and maps into the radical of ADIR. We need to show that ADIR
is a C∗-subalgebra of A with identity. Indeed, this follows analogously from Proposition 3.2 that ADIR is C∗-subalgebra of
A with identity.
Conversely, let ADIR be a C∗-subalgebra of A with identity. We need to show that MA,B is compact, spectrally bounded
and maps into the radical of ADIR. From Definition 2.1, the basic elementary operator is denoted by MA,B(X) = AXB for
all X ∈ ADIR and A, B fixed in ADIR. Let X be a projection in ADIR, that is, X2 = X such that LARB = AX · XB =

AX2B = AXB = BAX. Since r(X) = ‖X‖ and r(AXB) = r(BAX), it follows from Proposition 2.4 of [18] that

r(MA,B(X)) = r(AXB) = r(BAX) ≤ ‖B‖σr(AX) ≤ ‖B‖σ‖A‖σr(X) = Mr(X).

Hence, r(MAXB) ≤ Mr(X) is spectrally bounded for some M ≥ 0. Now, to prove that MA,B(X) maps into the radical, we
need to show that the intersection of all maximal left (right) ideals are invertible in ADIR and any invertible element of
ADIR is contained in the intersection of all maximal left (right) ideal. Let X ∈ ADIR be in the intersection of all maximal
left (right) ideal ofADIR then I−AXB is invertible inADIR for anyA, B fixed inADIR. This is because by Proposition 3.2,
I−AXB is left invertible by letting B = I and by Lemma 3.1, I−AXB is right invertible by letting A = I hence AXB must
be invertible inADIR. Finally, letE ∈ ADIR such thatE(I−AXB) = (I−AXB)E = I holds. SinceAX ∈ L0 andXB ∈ R0,
it implies that AXB is in the maximal idealM0 since E(I − AXB) = (I − AXB)E = I. Therefore, E = I + E(AXB) is
left invertible and E is maximal ideal. Thus, I −AXB and AXB are contained in the maximal idealM0. Therefore MA,B

maps into the radical of ADIR.

Corollary 3.1. Every elementary operator TAi,Bi
: ADIR → ADIR defined by TAi,Bi

(X) =
∑n
i=1AiXBi is spectrally

bounded.

Proof. From Theorem 3.1, MA,B(X) is spectrally bounded and since TAi,Bi is the sum of basic elementary operators, it
follows immediately that TAi,Bi is spectrally bounded, that is, r(TAi,Bi(X)) ≤Mr(X).

Remark 3.1. If (LA − RA)ADIR ( Rad(ADIR) that is A is not central modulo Rad(ADIR) then RA and hence LA cannot
be spectrally bounded.

Theorem 3.2. Let TAi,Bi ∈ C(E) be spectrally compact. Then TAi,Bi is a compact operator if and only if it is spectrally
bounded.
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Proof. Suppose that TAi,Bi is spectrally bounded. We prove that TAi,Bi is a compact operator. Let

CDIR = {X ∈ ADIR : r(X) ≤ 1}

be closed C∗-subalgebra ofADIR. Since TAi,Bi
is spectrally bounded, CDIR ⊆ ADIR and TAi,Bi

(CDIR) ⊆ TAi,Bi
(ADIR), and

thus TAi,Bi
CDIR is spectrally compact and hence compact.

Conversely, let TAi,Bi
be compact. We show that TAi,Bi

is spectrally bounded. We prove by contradiction. Suppose that
TAi,Bi is not spectrally bounded. We know that TAi,Bi attains its spectral operator norm if for some positive number M ≥ 0

then ‖TAi,Bi(X)‖σ ≤M , for all X ∈ ADIR. If r(X) > 0 for any X ∈ ADIR, ‖TAi,Bi(
X
r(X) )‖σ ≤M and r(TAi,Bi

(X)) ≤Mr(X)

is spectrally bounded. Choose ε > 0 arbitrarily such that r(X) = 0, then

r

(
X
ε
M

)
= 0 ⇒

∥∥∥∥∥TAi,Bi

(
X
ξ
M

)∥∥∥∥∥
σ

≤M and ‖TAi,Bi
(X)‖σ ≤M ·

ε

M
= ε.

Therefore, r(TAi,Bi
X) ≤ ‖TAi,Bi

(X)‖σ = 0 since r(X) = 0. Hence, r(TAi,Bi
(X)) ≤ Mr(X) for all X ∈ ADIR, which is a

contradiction. Hence, by Corollary 3.1, TAi,Bi must be spectrally bounded.

Example 3.1. Suppose that ADIR is dense irreducible commutative C∗-subalgebra and M2(C) is C∗-subalgebra of Banach
algebra A. Let Φ be an irreducible representation of ADIR on C and Ψ be an unbounded character on ADIR. Then, the
operator TAi,Bi

: ADIR →M2(C) having the representation

TAi,Bi(X) =

(
Φ(X) Ψ(X)

0 Φ(X)

)
,

for allX ∈ ADIR, is an unbounded operator and r(TAi,Bi(X)) = |Φ(X)| ≤ r(X) for allX ∈ ADIR. Hence, TAi,Bi is spectrally
bounded elementary but not compact; otherwise, by Theorem 3.2, TAi,Bi

should be spectrally bounded and compact operator.

Theorem 3.3. Every compact and spectrally bounded C∗-subalgebra CDIR is complete.

Proof. Let Xn be spectrally bounded sequence in ADIR such that r(Xn) ≤ M for some positive number M ≥ 0 and n ∈ N.
If CDIR = {X ∈ ADIR : r(X) ≤ M} is a spectrally bounded C∗-subalgebra of ADIR then TAi,Bi(CDIR) is compact and
(TAi,Bi

(Xn)) is a sequence in the compact subalgebra. To show that CDIR is complete, we prove that every converging
sequence in the compact subalgebra TAi,Bi

(CDIR) has a convergent subsequence. We apply the approximation property
from Definition 2.5 for compact C∗-subalgebra CDIR of ADIR. Let Yn be a sequence in TAi,Bi

(CDIR) and for all n ∈ N
then ‖Yn − TAi,Bi(Xn)‖ < 1

n , Xn ∈ CDIR. Since the sequence Xn is spectrally bounded, then there exists subsequence
TAi,Bi

(Xnk
) of TAi,Bi

(Xn) such that limk→∞ TAi,Bi
(Xnk

) → Y , for every Y ∈ BDIR. Let an arbitrary ε > 0 be given.
There are K1, K2 ∈ N such that 1

nk
< ε

2 ∀ k ≥ K1 and ‖TAi,Bi
(Xnk

) − Y ‖ < ε
2 for every k ≥ K2. Finally, suppose that

k ≥ max{K1, K2} then

‖Ynk
− Y ‖ = ‖Ynk

− TAi,Bi
(Xnk

) + TAi,Bi
(Xnk

)− Y ‖ ≤ ‖Ynk
− TAi,Bi

(Xnk
)‖+ ‖TAi,Bi

(Xnk
)− Y ‖ < ε

2
+
ε

2
= ε.

Therefore, the subsequence Ynk
→ Y converges.

Theorem 3.4. Let CDIR be a closed C∗-subalgebra of ADIR. If TAi,Bi
: CDIR → BDIR is a spectrally bounded compact

elementary operator, then TAi,Bi
has a spectrally bounded compact elementary operator extension T̃Ai,Bi

: ADIR → BDIR,
where both TAi,Bi

and T̃Ai,Bi
acts on sequences of maps with a unique point of convergence.

Proof. By Theorem 3.2, TAi,Bi is spectrally bounded compact elementary operator and the extension T̃Ai,Bi : ADIR → BDIR
is guaranteed by spectral extension property. Now, we only check the uniqueness of the point of convergence of T̃Ai,Bi

. Let
Xk be a spectrally bounded sequence in ADIR such that r(Xk) ≤ M , for some constant M ≥ 0 and for all k ∈ N. Suppose
we consider the set U = {λ ∈ C : |λ| < M} such that σ(Xk) ⊆ U , for all k ∈ N. We note from Theorem 3.3 that CDIR is
compact and complete. Hence, any X1 ∈ CDIR has a sequence X1k ∈ CDIR converging to X1 i.e X1k → X1. So applying
upper semi-continuous property of the spectrum, we have ‖X1 − Z‖ < γ1 for 0 < γ1 < 1 implies σ(Z) ⊆ U hence r(Z) ≤M .
Choose 0 < %1 < γ1, then there exists k1 ∈ N such that ‖X1k −X1‖ < %1 < 1 for every k ≥ k1. Hence σ(X1k) ⊆ U for every
k ≥ k1. Again, we choose X2 ∈ CDIR such that the sequence X2k ∈ CDIR converges to X2 i.e X2k → X2. Again applying
upper semi-continuous property of the spectrum, we have ‖X2 −Z‖ < γ2 for 0 < γ2 <

1
2 implies σ(Z) ⊆ U hence r(Z) ≤M .

If 0 < %2 < γ2, then there exists k2 ∈ N such that ‖X2k −X2‖ < %2 <
1
2 for every k ≥ k2. Hence σ(X2k) ⊆ U for every k ≥ k2.

By induction, the sequence Xik converges Xi such that Xki − Xiki
→ 0 and σ(Xik) ⊆ U . Using completeness property of

TAi,Bi
there exists a converging subsequence Xiki

such that TAi,Bi
(Xiki

)→ Y0 for some Y0 ∈ BDIR as i→∞ and applying
continuity of T̃Ai,Bi , we have T̃Ai,Bi(Xki)− T̃Ai,Bi(Xiki

) = T̃Ai,Bi(Xki −Xiki
)→ 0. Therefore, T̃Ai,Bi(Xki)→ Y0 and Xk has

a unique point of convergence Y0 for both TAi,Bi
and T̃Ai,Bi

.
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Corollary 3.2. Let TAi,Bi : ADIR → BDIR be a spectrally bounded compact elementary operator. Then the spectral adjoint
TB∗i ,A∗i : B∗DIR → A∗DIR is totally bounded if and only if B∗DIR is a spectrally bounded C∗-subalgebra of A.

Proof. Suppose that TB∗i ,A∗i is totally bounded. We show that B∗DIR is a spectrally boundedC∗-subalgebra ofA. Let {Sa}|a∈N
be a cauchy sequence in B∗DIR. Then for any ε > 0 and a, b ≥ n ∈ N, we have

|Sa(X)− Sb(X)| = r((Sa − Sb)X) ≤ ‖Sa − Sb‖σr(X) < εr(X), for all X ∈ ADIR.

In particular, the ‖TB∗i ,A∗i ‖σ ≤ ‖TAi,Bi
‖σ and TB∗i ,A∗i S = S ◦ TAi,Bi

, for all S ∈ B∗DIR and thus TB∗i ,A∗i is spectrally bounded.
Now,

r(TB∗i ,A∗i S) = ‖S ◦ TAi,Bi
‖ ≤ ‖S‖σ‖TAi,Bi

‖σ = ‖TAi,Bi
‖σr(S) ≤Mr(S), for all S ∈ B∗DIR.

Hence, B∗DIR is a spectrally bounded C∗-subalgebra of A.
Conversely, let B∗DIR be a spectrally bounded C∗-subalgebra of A. We show that TB∗i ,A∗i is totally bounded. So, we consider
C∗DIR a closed C∗-subalgebra of B∗DIR such that for some constant M > 0 and for every S ∈ C∗DIR then

‖S‖σ = r(S) ≤M. (1)

This shows that S is spectrally bounded. From Theorem 3.3, TAi,Bi
is a spectrally bounded compact elementary operator

so that TAi,Bi
(CDIR) is compact and complete. Thus, given ε > 0, then the sequence X1, ..., Xn ∈ CDIR is totally bounded

for k ∈ {1, ..., n} and ‖TAi,Bi(X) − TAi,Bi(Xk)‖ < ε
3M . Hence, CDIR is totally bounded. Now, we check if C∗DIR is a totally

bounded C∗-subalgebra. Let an irreducible representation Φ : B∗DIR → Cn be defined by

Φ(S) = (S(TAi,Bi(X1))), . . . , (S(TAi,Bi(Xn))), for every S ∈ B∗DIR.

By Equation (1), S ∈ B∗DIR is spectrally bounded and TAi,Bi is compact operator. It follows that Φ is a compact operator and
Φ(C∗DIR) is also compact C∗-subalgebra. To see that Φ(C∗DIR) is totally bounded, consider the sequence S1, ..., Sa ∈ C∗DIR
such that for any ε > 0 then there exists m ∈ {1, 2, ..., a} with ‖ΦS −ΦSm‖ < ε

3 . Thus, for every S ∈ C∗DIR then there exists
m ∈ {1, 2, ..., a} such that

|S(TAi,Bi(Xk))− Sm(TAi,Bi(Xk))|2 ≤
n∑
b=1

|S(TAi,Bi(Xb))− Sm(TAi,Bi(Xb))|2 = ‖Φ(S − Sm)‖2 < ε2

32
,

for every k ∈ {1, ..., n}. Indeed, for any X ∈ CDIR and S ∈ C∗DIR, then ‖TAi,Bi
(X)− TAi,Bi

(Xk)‖ < ε
3M for k ∈ {1, ..., n} and

‖ΦS − ΦSm‖ < ε
3 for m ∈ {1, 2, ..., a}. Thus, ‖S‖ ≤ ‖S‖σ ≤M holds for every S ∈ C∗DIR. Consequently, we have

|S(TAi,Bi
(X))− Sm(TAi,Bi

(X))| = |S(TAi,Bi
(X))− S(TAi,Bi

(Xk)) + S(TAi,Bi
(Xk))− Sm(TAi,Bi

(Xk))

+ Sm(TAi,Bi
(Xk))− Sm(TAi,Bi

(X))|

≤ |S(TAi,Bi
(X))− S(TAi,Bi

(Xk))|+ |S(TAi,Bi
(Xk))− Sm(TAi,Bi

(Xk))|

+ |Sm(TAi,Bi
(Xk))− Sm(TAi,Bi

(X))|

≤ ‖S‖.‖TAi,Bi(X)− TAi,Bi(Xk)‖+ ‖ΦS − ΦSm)‖+ ‖S‖.‖TAi,Bi(Xk)− TAi,Bi(X)‖

< M · ε

3M
+
ε

3
+M · ε

3M
= ε.

Now,

‖TB∗i ,A∗i (S)− TB∗i ,A∗i (Sm)‖σ = sup{r((TB∗i ,A∗i (S)− TB∗i ,A∗i (Sm))(X)) : r(X) ≤ 1}

= sup{|(TB∗i ,A∗i (S)− TB∗i ,A∗i (Sm))(X)| : r(X) ≤ 1}

= sup{|S(TAi,Bi(X))− Sm(TAi,Bi(X))| : r(X) ≤ 1}

≤ ε.

Hence, for every S ∈ C∗DIR, ‖TB∗i ,A∗i (S) − TB∗i ,A∗i (Sm)‖σ ≤ ε for m ∈ {1, ..., n}. Therefore, TB∗i ,A∗i (C∗DIR) is totally bounded
and TB∗i ,A∗i is a totally bounded operator.

Proposition 3.3. Let TAi,Bi : ADIR → ADIR be a linear map which is surjective up to compact operators. Then TAi,Bi

is essentially spectrally bounded if and only if TAi,Bi(KDIR) ⊆ KDIR and the induced map T̂Ai,Bi : QDIR → QDIR defined
by T̂Ai,Bi

(ϕ(X)) = ϕ(TAi,Bi
(X)) ∀ X ∈ ADIR is either a continuous automorphism or continuous anti-automorphism

multiplied by nonzero scalar.

25



W. Kangogo, N. B. Okelo, and O. Ongati / Contrib. Math. 3 (2021) 19–28 26

Proof. Without loss of generality, assume that TAi,Bi is essentially spectrally bounded such that re(TAi,Bi(X)) ≤Mre(X),
for all X ∈ ADIR holds. It is sufficient to prove that the operator TAi,Bi

leaves the KDIR invariant. Let E ∈ KDIR, we
show that TAi,Bi

(E) ∈ KDIR. Let S ∈ ADIR, since TAi,Bi
is surjective up to compact operators then there exists Y ′ ∈ ADIR

and E
′ ∈ ADIR for which S = TAi,Bi

(S
′
) + E

′ and so S′ ∈ ADIR. Now, S + TAi,Bi
(E) = TAi,Bi

(S
′
) + E

′
+ TAi,Bi

(E) =

TAi,Bi(S
′
+E) +E

′ ∈ ADIR. Thus, for every S ∈ ADIR, S + TAi.Bi(E) ∈ ADIR. It follows that for every E ∈ KDIR we have
S+E ∈ ADIR thus TAi,Bi(E) ∈ ADIR and we conclude that TAi,Bi(KDIR) ⊆ KDIR. Let E ∈ KDIR and Y ∈ ADIR. We show
that TAi,Bi

is surjective to compact operators, that is, TAi,Bi
(ADIR) = Ran(TAi,Bi

) +KDIR. Therefore, for any Y ∈ ADIR,
there exists C0 ∈ KDIR such that Y = TAi,Bi

(X) + C0. Therefore,

r(λϕ(TAi,Bi(C)) + ϕ(Y )) = r(ϕ(λ(TAi,Bi(C)) + Y )) = re(λ(TAi,Bi(C)) + Y ) = re(TAi,Bi(λC +X) + C0)

= re(TAi,Bi
(λC +X)) ≤Mre(λC +X) = Mre(X), λ ∈ C.

This λ → r(ϕ(TAi,Bi(C)) + ϕ(Y )) is a subharmonic function on C. By liouville’s Theorem implies that r(ϕ(TAi,Bi(C)) +

ϕ(Y )) = r(ϕ(Y )). By Zemánek’s characterization of the radical, we have ϕ(TAi,Bi
(C)) = 0 and TAi,Bi

(C) ∈ KDIR. This
shows that TAi,Bi

(KDIR) ⊆ KDIR. Thus, TAi,Bi
induces a surjective spectrally bounded linear map T̂Ai,Bi

: QDIR → QDIR
defined by T̂Ai,Bi

(ϕ(X)) = ϕ(TAi,Bi
(X)), ∀ X ∈ ADIR. We show that T̂Ai,Bi

is a continuous Jordan automorphism U
multiplied by an invertible central element of QDIR. Now, consider a non-zero projection P ∈ ADIR where ADIR is a
purely infinite C∗-algebra. It follows that PADIRP is also properly infinite C∗-algebra and each element can be written
as a finite sum of PADIRP . Thus

TAi,Bi(P ) + TAi,Bi(Q) + TAi,Bi(Q)TAi,Bi(P ) = 0, ∀ Q ∈ ADIR. (2)

Suppose we replace Q with I − P then,

TAi,Bi
(P ) + TAi,Bi

(I) + TAi,Bi
(I)TAi,Bi

(P ) = 2(TAi,Bi
(P ))2. (3)

Multiplying the identity TAi,Bi
(I) on left hand side and TAi,Bi

(P ) on the right hand side of Equation (3) and comparing the
two equations

TAi,Bi
(I)(TAi,Bi

(P ))2 = (TAi,Bi
(P ))2TAi,Bi

(I). (4)

Now, let X =
∑n
i=1 λiPi be a linear combination of orthogonal family of projection P1, ..., Pn of ADIR. Applying Equa-

tion (2), we have TAi,Bi(X)2 =
∑n
i=1 λ

2
iP

2
i and (TAi,Bi(X))2TAi,Bi(I) = TAi,Bi(I)(TAi,Bi(X))2 follows from Equation (4).

Consequently TAi,Bi
is continuous and has real rank zero, thus (TAi,Bi

(M))2TAi,Bi
(I) = TAi,Bi

(I)(TAi,Bi
(M))2 holds for

self-adjoint elements ofADIR. Suppose we choose Y ∈ BDIR such that each element can be expressed as finite sum square
zero elements in BDIR and TAi,Bi is surjective and TAi,Bi(I) is the central element of BDIR. Using Equation (3) we have

(TAi,Bi
(P ))2 = TAi,Bi

(P )TAi,Bi
(I) = (TAi,Bi

(P 2))TAi,Bi
(I), ∀ ∈ ADIR.

Suppose that N ∈ ADIR such that TAi,Bi(N) = I with TAi,Bi(I) being invertible then

I = (TAi,Bi
(N))2 = (TAi,Bi

(N2))(TAi,Bi
(I)) = (TAi,Bi

(I))(TAi,Bi
(N2)).

Let U(X) = (TAi,Bi(I)−1)(TAi,Bi(X)), ∀ X ∈ ADIR and for all X ∈ ADIR,

(U(X))2 = TAi,Bi
(I)−2(TAi,Bi

(X))2 = (TAi,Bi
(I)−1)(TAi,Bi

(X2)) = U(X2).

Hence U is a Jordan automorphism multiplied by an invertible central element of QDIR and the centre T̂Ai,Bi
(ϕ(X)) =

ϕ(TAi,Bi
(X)). Therefore, QDIR is a prime C∗-subalgebras and U is a Jordan an automorphism or an anti-automorphism.

Theorem 3.5. Let TAi,Bi
: ADIR → BDIR be a linear map which is surjective up to compact operators. Then TAi,Bi

compresses the essential spectrum if and only if TAi,Bi
(KDIR) ⊆ KDIR and the induced map T̂Ai,Bi

: QDIR → QDIR defined
by T̂Ai,Bi

(ϕ(X)) = ϕ(TAi,Bi
(X)) ∀ X ∈ ADIR is either a continuous automorphism or continuous anti-automorphism.

Proof. From Proposition 3.3, it follows that TAi,Bi
is an essentially spectrally bounded, that is, re(TAi,Bi

(X)) ≤ Mre(X)

for all X ∈ ADIR and TAi,Bi(KDIR) ⊆ KDIR. Therefore, the induced map T̂Ai,Bi : QDIR → QDIR is either a continuous
automorphism or continuous anti-automorphism multiplied by a non-zero constant α. Then TAi,Bi

is said to compress the
essential spectrum if {α} = σe(TAi,Bi

(X)) ⊆ σe(X) = I where α = I.

26



W. Kangogo, N. B. Okelo, and O. Ongati / Contrib. Math. 3 (2021) 19–28 27

Proposition 3.4. Let I and J be two closed proper ideals of dense irreducible subalgebras ADIR and BDIR respectively
such that BDIR/J is semi-simple. Then for a linear mapping TAi,Bi

: ADIR → BDIR the following conditions are equivalent:

(i). TAi,Bi
is essentially spectrally bounded and surjective modulo J .

(ii). TAi,Bi
I ⊆ J and T̂Ai,Bi

: ADIR/I → BDIR/J spectrally bounded and surjective.

Proof. (ii)→ (i). Since TAi,Bi
is spectrally compact then TAi,Bi

I ⊆ J . We say that TAi,Bi
is essentially spectrally bounded

if for any positive number M ≥ 0, then r(TAi,Bi
(X) + J ) ≤ Mr(X + I), for all X ∈ ADIR. Without the loss of generality,

we assume that T̂Ai,Bi essentially spectrally bounded, that is, for all X ∈ ADIR, r(T̂Ai,Bi(X) + J ) ≤ Mr(X + I). We see
that TAi,Bi

is surjective modulo J if for every Y ∈ BDIR then, there is X ∈ ADIR such that Y − TAi,Bi
(X) ∈ J . Thus, for

every Y ∈ BDIR then Y + J = T̂Ai,Bi
(X + I) = TAi,Bi

(X) + J for some X ∈ ADIR hence TAi,Bi
is surjective modulo J .

(i) ⇒ (ii). Now, we prove that TAi,Bi
I ⊆ J , then fix X ∈ I and Y ∈ BDIR such that there exists X1 ∈ ADIR such that

Y − TAi,Bi(X1) ∈ J . For any λ ∈ C, it holds that

r(λ(TAi,Bi
(X) + J )) + Y + J = r(λTAi,Bi

(X) + Y + J ) = r(λTAi,Bi
(X +X1) + J ) ≤Mr(λX +X1 + I) = Mr(X1 + I).

for some constantM ≥ 0. Using the sub-harmonicity of spectral radius function λ→ r(λ(TAi,Bi(X)+J ))+Y+J is bounded
on C hence constant and r(TAi,Bi

(X) + J + Y + J ) = r(Y + J ), for all Y ∈ BDIR. Thus, TAi,Bi
(X) + J ∈ Rad(BDIR)/J

and by Zamanek’s characterization of the radical TAi,Bi
(X) ∈ J is semi-simple.

Proposition 3.5. Let I and J be two closed proper ideals of dense irreducible subalgebras ADIR and BDIR respectively
such that BDIR/J is semi-simple. If TAi,Bi : ADIR → BDIR is essentially spectrally bounded and surjective modulo J , then
TAi,Bi

is a Jordan automorphism modulo J .

Proof. Suppose that ADIR be a C∗-subalgebra with real rank zero and BDIR be a unital Banach algebra. Then by Propo-
sition 3.4, TAi,Bi

I ⊆ J and T̂Ai,Bi
: ADIR/I → BDIR/J is unital essentially spectrally bounded compact and surjective.

Suppose that P is a nonzero projection in ADIR. It follows that P is a properly infinite since ADIR is a purely infinite
and the hereditary property of C∗- subalgebras implies that PADIRP is properly infinite. In fact, the projection PADIRP
can be expressed as a finite sum of square zero elements in PADIRP . Now, TAi,Bi

sends every projection in ADIR into an
idempotent in BDIR. Thus, choose any X ∈ ADIR withX2 = 0 then (TAi,Bi

(X))2 = 0 hence TAi,Bi
is Jordan automorphism

because the linear span of orthogonal projection is dense in ADIR and thus rank zero. It follows that T̂Ai,Bi
is Jordan

automorphism modulo J .

Lemma 3.2. Let TAi,Bi
: ADIR → BDIR be a spectrally bounded compact elementary operator from a unital dense ir-

reducible C∗-subalgebra ADIR into unital semi-simple dense irreducible Banach subalgebra BDIR. If P, Q of mutually
orthogonal projections in ADIR then

(TAi,Bi
(X))(TAi,Bi

(Y )) + (TAi,Bi
(Y ))(TAi,Bi

(X)) = 0, for every X ∈ PADIRP, Y ∈ QADIRQ (5)

Proof. Because of Proposition 3.5, TAi,Bi preserves square zero and is spectrally bounded. Suppose that X ∈ PADIRP
and Y ∈ QADIRQ then each element can be written as a finite sum X =

∑
iXi and Y =

∑
j Yj , respectively, where∑

iXi ∈ PADIRP,
∑
j Yj ∈ QADIRQ are square zero for all i, j. This means that (Xi + Yj)

2 = 0 and (TAi,Bi
(Xi + Yj))

2 = 0

which yields,
(TAi,Bi

(Xi))(TAi,Bi
(Yi)) + (TAi,Bi

(Yi))(TAi,Bi
(Xi)) = 0.

Summing over all i, j we have (TAi,Bi
(X))(TAi,Bi

(Y )) + (TAi,Bi
(Y ))(TAi,Bi

(X)) = 0.

Theorem 3.6. Let TAi,Bi
: ADIR → BDIR be a spectrally bounded compact elementary operator from a unital dense

irreducible C∗-subalgebra ADIR onto semi-simple dense irreducible Banach subalgebra BDIR. If TAi,Bi(I) is an invertible
element in centre of BDIR then every nonzero projection in ADIR is properly infinite.

Proof. Let P ∈ ADIR be a nontrivial projection. Suppose that X = P and Y = Q = I − P . Using Equation (5), we have

(TAi,Bi
(P ))TAi,Bi

(I − P ) + TAi,Bi
(I − P )(TAi,Bi

(P )) = 0.

Since (TAi,Bi
(P ))2 = (TAi,Bi

(P )) then substituting TAi,Bi
(I − P ) with TAi,Bi

(I), we have

(TAi,Bi(P ))(TAi,Bi(I)) + (TAi,Bi(I))(TAi,Bi(P )) = 2(TAi,Bi(P ))2

27



W. Kangogo, N. B. Okelo, and O. Ongati / Contrib. Math. 3 (2021) 19–28 28

By multiplying the identity TAi,Bi(I)) on the left and on the right by TAi,Bi(P ) and subtracting the resulting identities, we
obtain

(TAi,Bi
(P )2(TAi,Bi

(I)) = (TAi,Bi
(I))T (Ai,Bi

P )2,

for nontrivial projectionP . Suppose {P1, ..., Pn} is an orthogonal family inADIR and λ1, ..., λn ∈ R and by applying Equation
(5), (TAi,Bi

(
∑
i λiPi))

2 =
∑
i λ

2
i (TAi,Bi

(P )i)
2. Also, ADIR has a real rank zero, therefore the linear combinations are dense

in a subset of self-adjoint elements of ADIR. In fact, TAi,Bi
is spectrally bounded and it extends to all X which are self-

adjoint in ADIR. Now XY + Y X = (X + Y )2 − X2 − Y 2 and (X + iY )2 = X2 − Y 2 + i(XY + Y X) for all self-adjoint
X,Y ∈ ADIR. We conclude that TAi,Bi(I) commutes with (TAi,Bi(W ))2 for every W ∈ ADIR. Then TAi,Bi is surjective
and TAi,Bi

(I) commutes with every square of an element BDIR but since 2Y = (I + Y )2 − I − Y 2 for each Y ∈ BDIR.
We obtain TAi,Bi

(I) belong to centre of BDIR. Consequently TAi,Bi
(P 2)(TAi,Bi

(I)) = TAi,Bi
(P )(TAi,Bi

(I)) = (TAi,Bi
(P )2 for

every projection P ∈ ADIR. Thus, ADIR has a rank zero, we see that (TAi,Bi
(X))2(TAi,Bi

(I)) = (TAi,Bi
(X))2, for every

X ∈ ADIR. Since TAi,Bi is surjective, it follows that TAi,Bi(I) must be invertible.

4. Open problems

Most of the linear mappings on Banach algebras are elementary operators. Due to varied definitions of elementary oper-
ators, the interplay between the structural properties of elementary operators and the underlying algebra is often chal-
lenging; for example, the structure of spectrally bounded compact elementary operators on general Banach algebras. We
end this paper by stating the following open problems.

(i). Establish some properties of power bounded spectrally compact elementary operators on general Banach subalgebras.

(ii). Investigate the idempotency and orthogonality properties of spectrally bounded compact elementary operators on
general Banach subalgebras.
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