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Abstract

Let H be a complex separable Hilbert space and B(H) the algebra

of all bounded linear operators on H. In this paper, we give consid-

erable generalizations of the inequalities for norms of commutators of

normal operators. Let S, T ∈ B(H) be positive normal operators with

the cartesian decomposition S = A + iC and T = B + iD such that

a1 ≤ A ≤ a2, b1 ≤ B ≤ b2, c1 ≤ C ≤ c2 and d1 ≤ D ≤ d2 for some

real numbers a1, a2, b1, b2, c1, c2, d1 and d2 we have shown that ‖ST−

TS‖ ≤ 1
2

√

(a2 − a1)2 + (c2 − c1)2
√

(b2 − b1)2 + (d2 − d1)2. Moreover,

orthogonality and norm inequalities for commutators of derivation

are also established. We have shown that if the pair of operators

(S, T ) satisfies Fuglede-Putnam’s property and C ∈ ker(δS,T ) where

C ∈ B(H) then ‖δS,TX + C‖ ≥ ‖C‖.
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1 Introduction

Studies on commutators and their norm inequalities have been considered

by several mathematicians [1], [2] and [3]. Very interesting results have been

obtained in special cases however, a generalization in infinite dimensional

complex separable Hilbert space remain interesting. At this point we start

by defining some key terms that are useful in the sequel.

Definition 1.1 An element S ∈ B(H) is a commutator if there exist X, T ∈

B(H) such that S = XT −TX ; is positive if ‖S‖ ≥ 0; normal if SS∗ = S∗S;

and self-adjoint if S = S∗.

Definition 1.2 For S, T ∈ B(H), let δS,T denote the operator on B(H)

defined by δS,TX = SX − XT is called the generalized derivation. If S =

T, δSX = SX −XS is called the inner derivation induced by S ∈ B(H).

Definition 1.3 Let S, T ∈ B(H). We say that the pair S, T satisfies (FP )B(H)

the Fuglede-Putnam’s property, if SC = CT where C ∈ B(H) implies

S∗C = CT ∗.

2 Inequalities for norms of commutators

Our aim in this section is to establish some inequalities of norms of com-

mutators of normal operators that can be obtained naturally from cartesian

decomposition and various vector inequalities in inner product spaces for ex-

ample, reverse of quadratic Schwarz inequality. In the following result, we

obtain a norm inequality for commutators of normal operators.

Theorem 2.1 Let S, T ∈ B(H) be positive normal operators with the carte-

sian decomposition S = A + iC and T = B + iD such that a1 ≤ A ≤

a2, b1 ≤ B ≤ b2, c1 ≤ C ≤ c2 and d1 ≤ D ≤ d2 for some real numbers
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a1, a2, b1, b2, c1, c2, d1 and d2 then,

‖ST − TS‖ ≤
1

2

√

(a2 − a1)2 + (c2 − c1)2
√

(b2 − b1)2 + (d2 − d1)2 (1)

Proof: Since S, T ∈ B(H) are normal such that S = A+iC and T = B+iD

are the cartesian decomposition of S and T . Then S − z and T − w are

normal for all complex numbers z and w such that a = a1+a2
2

, b = b1+b2
2

, c =

c1+c2
2

, d = d1+d2
2

, z = a+ ic and w = b+ id. Then

‖ST − TS‖ = ‖(S − z)(T − w)− (T − w)(S − z)‖

≤ ‖S − z‖‖T − w‖+ ‖T − w‖‖S − z‖

≤ 2‖S − z‖‖B − w‖. (2)

Following an analogous argument of [4] we have

‖S − z‖2 ≤ ‖A− a‖2 + ‖C − c‖2. (3)

Similarly

‖T − w‖2 ≤ ‖B − b‖2 + ‖D − d‖2. (4)

Suppose A,B,C,D ∈ B(H) are self-adjoint with a1 ≤ A ≤ a2, b1 ≤ B ≤

b2, c1 ≤ C ≤ c2 and d1 ≤ D ≤ d2 for some real numbers a1, a2, b1, b2, c1, c2, d1

and d2 and a = a1+a2
2

, then −(a1+a2
2

) ≤ A−a ≤ a1+a2
2

and so ‖A−a‖ ≤ a1+a2
2

.

Similarly, ‖B − b‖ ≤ b1+b2
2

, ‖C − c‖ ≤ c1+c2
2

and ‖D − d‖ ≤ d1+d2
2

. Which

upon substituting in Inequality 3 and Inequality 4 we obtain

‖S − z‖ ≤

√

(a2 − a1)2

2
+

(c2 − c1)2

2
. (5)

and

‖T − w‖ ≤

√

(b2 − b1)2

2
+

(d2 − d1)2

2
. (6)

Substituting Inequality 5 and Inequality 6 into Inequality 2 we obtain

‖ST − TS‖ ≤ 2

√

(a2 − a1)2

2
+

(c2 − c1)2

2

√

(b2 − b1)2

2
+

(d2 − d1)2

2

3



which upon simplification yields

‖ST − TS‖ ≤
1

2

√

(a2 − a1)2 + (c2 − c1)2
√

(b2 − b1)2 + (d2 − d1)2.

Corollary 2.2 Let S, T ∈ B(H) be normal operators with the cartesian de-

composition S = A + iC and T = B + iD such that C and D are positive,

then

‖ST − TS‖ ≤
1

2

√

4‖A‖2 + ‖C‖2
√

4‖B‖2 + ‖D‖2. (7)

Proof: Consider Inequality 2 and let a1 = −‖A‖, a2 = ‖A‖, c1 = 0, c2 =

‖C‖, b1 = −‖B‖, b2 = ‖B‖, d1 = 0 and d2 = ‖D‖. Substituting in Inequality

8 we obtain

‖ST − TS‖ ≤
1

2

√

4‖A‖2 + ‖C‖2
√

4‖B‖2 + ‖D‖2.

Remark 2.3 In Corollary 2.2 if we instead of the assumption that C and

D are positive, we can assume that S and T are positive, then we obtain the

inequality

‖ST − TS‖ ≤
1

2

√

‖A‖2 + 4‖C‖2
√

‖B‖2 + 4‖D‖2.

Corollary 2.4 Let S ∈ B(H) with the cartesian decomposition S = A+ iC

such that A and C are positive. Then ‖S∗S − SS∗‖ ≤ 1
2
(‖A‖2 + ‖C‖2)

Proof: Let S ∈ B(H) has the cartesian decomposition S = A + iC.

Also let A and C be self-adjoint and S∗S − SS∗ = 2i(AC − CA). Using

[[1], Inequality 36] and the arithmetic geometric mean inequality, we have

‖S∗S − SS∗‖ = 2‖AC − CA‖ ≤ ‖A‖‖C‖ ≤ 1
2
(‖A‖2 + ‖C‖2).

4



Theorem 2.5 Let S, T ∈ B(H) be normal operators with the cartesian de-

composition S = A + iC and T = B + iD such that a1 ≤ A ≤ a2, b1 ≤ B ≤

b2, c1 ≤ C ≤ c2 and d1 ≤ D ≤ d2 for some real numbers a1, a2, b1, b2, c1, c2, d1

and d2 andX and Y are compact then, sj(SX−Y T ) ≤ max(‖A‖, ‖B‖)sj(X⊕

Y ) for j = 1, 2, ...

Proof: Let a = a1+a2
2

, b = b1+b2
2

, c = c1+c2
2

, d = d1+d2
2

, z = a + ic and

w = b+ id. We have, (SX − Y T ) = (S − z+w
2
)X − Y (T − z+w

2
). Taking the

norms we obtain sj‖SX − Y T‖ ≤ ‖(S − z+w
2
)‖ + ‖T − ( z+w

2
)‖sj(X ⊕ Y ).

Since S and T are normal then S − z and T − w is normal. It follows by

analogy that

sj‖SX − Y T‖ ≤ ‖(S − z)−
z + w

2
‖+ ‖(T − w)

−
z + w

2
)‖sj(X ⊕ Y ). (8)

≤ (‖S − z‖+ ‖T − w‖+ |z − w|)sj(X ⊕ Y ).

≤ (
√

‖A− a‖2 + ‖C − c‖2 +
√

‖B − b‖2 + ‖D − d‖2

+
√

(a− b)2 + (c− d)2) by (Equation 5)

≤ (‖A− a‖+ ‖B − b‖+ ‖C − c‖+ ‖D − d‖+ |a− b| + |c− d|)sj(X ⊕ Y )

≤ (
a2 − a1 + b2 − b1 + c2 − c1 + d2 − d1

2
+

|
|a2 − a1 + b2 − b1 + c2| − |c1 + d2 − d1|

2
|)sj(X ⊕ Y )

=
(b2 − a1) + (a2 − b1) + |(b2 − a1)− (a2 − b1)|

2

+
(d2 − c1) + (d2 − c1) + |(d2 − c1)− (d2 − c1)|

2
sj(X ⊕ Y )

= (max(b2 − a1, a2 − b1) + (max(d2 − c1, c2 − d1)sj(X ⊕ Y ).

Letting a1 = a2 = b1 = c1 = c2 = d1 = 0, b2 = ‖A‖ and d2 = ‖B‖ then we

have

sj(SX − Y T ) ≤ max(‖A‖, ‖B‖)sj(X ⊕ Y ) for j = 1, 2, ...

Corollary 2.6 Let S ∈ B(H) be normal with the cartesian decomposition
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S = A+ iC if a1 ≤ A ≤ a2 and c1 ≤ C ≤ c2 for some real numbers a1, a2, c1

and c2 and if X, Y are compact, then sj‖SX − Y T‖ ≤ ‖A‖sj(X ⊕ Y ) for

j = 1, 2, ...

Proof: From Inequality 8 replacing T, b, d and w by S, a, c and z we obtain

sj(SX − Y S) ≤ ‖S − z‖+ ‖S − z‖ ≤ 2‖S − z‖

≤ 2

√

(a2 − a1)2

2
+

(c2 − c1)2

2
sj(X ⊕ Y ) by (Equation 5)

≤
√

(a2 − a1)2 + (c2 − c1)2sj(X ⊕ Y )

Let a1 = c1 = c2 = 0 and ‖a2‖ = ‖A‖ we obtain sj(SX − Y S) ≤ ‖A‖sj(X ⊕

Y ) for j = 1, 2, ...

Lemma 2.7 Let S, T ∈ B(H) be normal operators belonging to the norm

ideal associated with the Hilbert Schmidt norm ‖.‖2 such that there product

ST is normal. Then

‖ST‖2 ≤ ‖TS‖2. (9)

Proof: Let w(A) denote the numerical radius of S. Then from w(S) ≤ ‖S‖

and if S is normal, w(S) = ‖S‖. Moreover, for any two normal operators S

and T we have

w(ST ) = ‖TS‖. (10)

Suppose ST is normal, then we have;

‖ST‖2 ≤ w(ST ) = w(TS) ≤ ‖TS‖2.

Lemma 2.8 Let S and T be as Lemma 2.7 above. If ST is a normal operator

then ‖|ST |
1

2‖ ≤ ‖|TS|
1

2‖.
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Proof: Invoking Equation 10 we have ‖|ST |
1

2‖ = w(|ST |
1

2 ) = w(|TS|
1

2 ) ≤

‖|TS|
1

2‖.

Theorem 2.9 Let X be a positive definite operator and let S and T be nor-

mal operators belonging to the norm ideal associated with the Hilbert Schmidt

norm ‖.‖2. Then ‖S − T‖22 ≤ ‖SX −XT‖22‖X
−1S − TX−1‖22.

Proof: Suppose S and T are self-adjoint then we can write ‖S − T‖2 =

‖|(S−T )2|
1

2‖2 = ‖|(S−T )X−
1

2X
1

2 (S−T )|
1

2‖2. Using Lemma 2.7 and Lemma

2.8 we get

‖S − T‖2 ≤ ‖|X
1

2 (S − T )2X−
1

2 |
1

2‖2

≤ (‖X
1

2 (S − T )X
1

2‖2‖X
−

1

2 (S − T )X−
1

2‖2)
1

2

≤ (‖Re[(S − T )X ]‖2‖Re[X−1(S − T )]‖2)
1

2 .

Since TX −XT and TX−1 −X−1T are skew-Hermitian [5] then

Re[(S − T )X ] = Re[(S − T )X + (TX −XT )] = Re(SX −XT ), and

Re[X−1(S−T )] = Re[X−1(S−T )+(TX−1−X−1T )] = Re(X−1S−TX−1).

This implies that ‖S − T‖2 ≤ (‖Re(SX − XT )‖2‖Re(X−1S − TX−1)‖2)
1

2 .

But ‖ReS‖ ≤ ‖S‖ for any operator. So we have ‖S − T‖2 ≤ (‖SX −

XT‖2‖X
−1S−TX−1‖2)

1

2 which upon squaring we obtain the required result.

Corollary 2.10 Let S, T,X ∈ B(H) such that S and T are positive, then

‖SX −XT‖2‖ ≤ ‖X‖2(‖S‖
2
2 + ‖T‖22)

1

2 .

Proof: ‖SX −XT‖2 = ‖(S − T )X‖2 ≤ ‖S − T‖2‖X‖2. Since S and T are

positive i.e ‖S − T‖2 = (‖S‖22 + ‖T‖22)
1

2 , then we have by [1]

‖SX −XT‖2 ≤ ‖X‖2(‖S‖
2
2 + ‖T‖22)

1

2 .

Theorem 2.11 Let S, T ∈ B(H) be positive and self-adjoint operators and

ST −TS be also positive. If n > 0 is defined such that ‖ST −TS‖ ≤ n, then

‖STx‖2 ≥
1

n2
(‖STx‖4 − |〈(ST )2x, x〉|2) ∀x ∈ H, , ‖x‖ = 1. (11)

7



Proof: We employ the reverse of quadratic Schwarz inequality in i.e.

0 ≤ ‖a‖2‖b‖2 − |〈a, b〉|2 ≤
1

|α|2
‖a‖2‖a− αb‖2.

For every a, b ∈ H , let α = 1 , a = ST , b = TS, we have

‖STx‖2‖TSx‖2 − |〈STx, TSx〉| ≤ ‖STx‖2‖STx− TSx‖2.

Since ST = TS, we have ‖STx‖4 − |〈(ST )2x, x〉| ≤ n2‖STx‖2 which upon

simplification yield, ‖STx‖2 ≥ 1
n2 (‖STx‖

4 − |〈(ST )2x, x〉|2). 1
2
is the best

constant possible in Inequality 11 in the sense that it cannot be replaced by

a smaller quantity in general. The equality case is realized in Inequality 11

if, for instance one takes S =





1 1

1 −1



 , T =





0 1

1 0



 and a unit vector

x =





0

1



 . Therefore Inequality 11 becomes

‖STx‖2 ≥ 1
2
(‖STx‖4 − |〈(ST )2x, x〉|2) ∀x ∈ H, , ‖x‖ = 1.

3 Orthogonality of commutators of deriva-

tions

In this section, we give some new results on orthogonality of commutators

of normal derivation with respect to Fuglede-Putnam’s property and norm-

attainable operators.

Lemma 3.1 Let S, T, C ∈ B(H). Then the following are equivalent

i. The pair (S, T ) has the property (FP )B(H).

ii. If SC = CT , then R(C) reduces S, ker(C)⊥ reduces T and S|R(C) and

T |ker(C)⊥ are normal operators where R and the ker denote the range

and the kernel.
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Proof: (1) ⇒ (2) Analogously by the proof of [3] Since SC = CT and the

pair (S, T ) has the property (FP )B(H), S
∗C = CT ∗ this implies that R(C)

and ker(C)⊥ are the reducing subspaces for S and T . If S(SC) = (SC)T , by

(FP )B(H) we obtain S∗(SC) = (SC)T ∗ and the identity S∗C = CT ∗ implies

that S∗SC = SS∗C. This shows that S|R(C) is normal. Indeed, (T ∗, S∗)

satisfies (FP )B(H) and (T ∗C∗ = C∗S∗. Similarly T ∗|R(C) = (T |ker(C))
∗

(2) ⇒ (1) If C ∈ B(H) such that SC = CT. Let S = S1⊕S2 with respect to

the orthogonal decomposition H = R(C)⊕R(C)⊥, T = T1⊕T2 with respect

to H = ker(C) ⊕ ker(C)⊥ and X : R(C) ⊕ R(C)⊥ → ker(C)⊥ ⊕ ker(C)

have the matrix representation X =





X1 X2

X3 X4



 From SC = CT , it follows

that S1C1 = C1T1. Since S1 and T1 are normal operators, then applying

the Fuglede-Putnam’s property, we obtain S∗

1C1 = C1T
∗

1 which implies that

S∗C = CT ∗.

Theorem 3.2 Let S, T,X ∈ B(H). If the pair of operators (S, T ) satis-

fies Fuglede-Putnam’s property and C ∈ ker(δS,T ) where C ∈ B(H) then

‖δS,TX + C‖ ≥ ‖C‖.

Proof: Since the pair (S, T ) satisfies the (FP )B(H) property it follows that

from Lemma 3.1 thatR(C) reduced S, ker⊥(C) reduces T and S|
R(C), T |ker⊥(C)

are normal operators. Letting Co : ker
⊥(C) → R(C) be the quasi-affinity de-

fined by setting C1x = Cx for each x ∈ ker⊥, then it results that δS,T (Co) =

δS∗

1
,T ∗

1
(Co) = 0. By Lemma 3.1, we have the matrix representation S =





S1 0

0 S2



 , T =





T1 0

0 T2



 , C =





C1 0

0 C2



 , X =





X1 X2

X3 X4



 Since

S1 and T1 are two normal operators, then ‖δS,T (X)+C‖ = ‖





δS1,T1
X + C1 ∗

∗



 ‖ ≥

‖δS1,T1
(X) + C1‖ = ‖C‖.

Corollary 3.3 Let S, T,X ∈ B(H) and C ∈ ker(δS,T ) then ‖δS,TX + C‖ ≥

9



‖C‖.

Proof: On H ⊕H consider the operator M,N and Y defined as:

N =





S 0

0 T



 , M =





0 C

0 0



 , Y =





0 X

0 0



 .

Then N is normal, M ∈ N
′

and δN(Y ) +M =





0 δS,TX + C

0 0



 .

Applying Theorem 3.2 to the operators N,M and Y and M ∈ δS,T and

‖δNY +M‖ ≥ ‖M‖. Therefore, C ∈ δS,T and ‖δS,TX + C‖ ≥ ‖C‖.

4 Conclusion

In this paper, we have given results on norm inequality for commutators and

also orthogonality of these commutators in Banach algebras.
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